Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Cherniack is active.

Publication


Featured researches published by Andrew D. Cherniack.


Nature Genetics | 2013

Pan-cancer patterns of somatic copy number alteration

Travis I. Zack; Steven E. Schumacher; Scott L. Carter; Andrew D. Cherniack; Gordon Saksena; Barbara Tabak; Michael S. Lawrence; Cheng-Zhong Zhang; Jeremiah Wala; Craig H. Mermel; Carrie Sougnez; Stacey Gabriel; Bryan Hernandez; Hui Shen; Peter W. Laird; Gad Getz; Matthew Meyerson; Rameen Beroukhim

Determining how somatic copy number alterations (SCNAs) promote cancer is an important goal. We characterized SCNA patterns in 4,934 cancers from The Cancer Genome Atlas Pan-Cancer data set. Whole-genome doubling, observed in 37% of cancers, was associated with higher rates of every other type of SCNA, TP53 mutations, CCNE1 amplifications and alterations of the PPP2R complex. SCNAs that were internal to chromosomes tended to be shorter than telomere-bounded SCNAs, suggesting different mechanisms underlying their generation. Significantly recurrent focal SCNAs were observed in 140 regions, including 102 without known oncogene or tumor suppressor gene targets and 50 with significantly mutated genes. Amplified regions without known oncogenes were enriched for genes involved in epigenetic regulation. When levels of genomic disruption were accounted for, 7% of region pairs were anticorrelated, and these regions tended to encompass genes whose proteins physically interact, suggesting related functions. These results provide insights into mechanisms of generation and functional consequences of cancer-related SCNAs.


Cancer Discovery | 2013

Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors

Esra A. Akbay; Shohei Koyama; Julian Carretero; Abigail Altabef; Jeremy H. Tchaicha; Camilla L. Christensen; Oliver R. Mikse; Andrew D. Cherniack; Ellen M. Beauchamp; Trevor J. Pugh; Matthew D. Wilkerson; Peter E. Fecci; Mohit Butaney; Jacob B. Reibel; Margaret Soucheray; Travis J. Cohoon; Pasi A. Jänne; Matthew Meyerson; D. Neil Hayes; Geoffrey I. Shapiro; Takeshi Shimamura; Lynette M. Sholl; Scott J. Rodig; Gordon J. Freeman; Peter S. Hammerman; Glenn Dranoff; Kwok-Kin Wong

UNLABELLED The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition. SIGNIFICANCE We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.


Cell | 2016

Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma

Michele Ceccarelli; Floris P. Barthel; Tathiane Maistro Malta; Thais S. Sabedot; Sofie R. Salama; Bradley A. Murray; Olena Morozova; Yulia Newton; Amie Radenbaugh; Stefano Maria Pagnotta; Samreen Anjum; Jiguang Wang; Ganiraju C. Manyam; Pietro Zoppoli; Shiyun Ling; Arjun A. Rao; Mia Grifford; Andrew D. Cherniack; Hailei Zhang; Laila M. Poisson; Carlos Gilberto Carlotti; Daniela Tirapelli; Arvind Rao; Tom Mikkelsen; Ching C. Lau; W. K. Alfred Yung; Raul Rabadan; Jason T. Huse; Daniel J. Brat; Norman L. Lehman

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Nature | 2014

Landscape of genomic alterations in cervical carcinomas

Akinyemi I. Ojesina; Lee Lichtenstein; Samuel S. Freeman; Chandra Sekhar Pedamallu; Ivan Imaz-Rosshandler; Trevor J. Pugh; Andrew D. Cherniack; Lauren Ambrogio; Kristian Cibulskis; Bjørn Enge Bertelsen; Sandra Romero-Cordoba; Victor Trevino; Karla Vazquez-Santillan; Alberto Salido Guadarrama; Alexi A. Wright; Mara Rosenberg; Fujiko Duke; Bethany Kaplan; Rui Wang; Elizabeth Nickerson; Heather M. Walline; Michael S. Lawrence; Chip Stewart; Scott L. Carter; Aaron McKenna; Iram P. Rodriguez-Sanchez; Magali Espinosa-Castilla; Kathrine Woie; Line Bjørge; Elisabeth Wik

Cervical cancer is responsible for 10–15% of cancer-related deaths in women worldwide. The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established. Previous studies have also implicated somatic mutations in PIK3CA, PTEN, TP53, STK11 and KRAS as well as several copy-number alterations in the pathogenesis of cervical carcinomas. Here we report whole-exome sequencing analysis of 115 cervical carcinoma–normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour–normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.


Journal of Clinical Investigation | 2005

Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes

Aimee M. Powelka; Asha Seth; Joseph V. Virbasius; Evangelos Kiskinis; Sarah M. Nicoloro; Adilson L. Guilherme; Xiaoqing Tang; Juerg R. Straubhaar; Andrew D. Cherniack; Malcolm G. Parker; Michael P. Czech

Using an siRNA-based screen, we identified the transcriptional corepressor RIP140 as a negative regulator of insulin-responsive hexose uptake and oxidative metabolism in 3T3-L1 adipocytes. Affymetrix GeneChip profiling revealed that RIP140 depletion upregulates the expression of clusters of genes in the pathways of glucose uptake, glycolysis, TCA cycle, fatty acid oxidation, mitochondrial biogenesis, and oxidative phosphorylation in these cells. Conversely, we show that reexpression of RIP140 in mouse embryonic fibroblasts derived from RIP140-null mice downregulates expression of many of these same genes. Consistent with these microarray data, RIP140 gene silencing in cultured adipocytes increased both conversion of [14C]glucose to CO2 and mitochondrial oxygen consumption. RIP140-null mice, previously reported to resist weight gain on a high-fat diet, are shown here to display enhanced glucose tolerance and enhanced responsiveness to insulin compared with matched wild-type mice upon high-fat feeding. Mechanistically, RIP140 was found to require the nuclear receptor ERRalpha to regulate hexose uptake and mitochondrial proteins SDHB and CoxVb, although it likely acts through other nuclear receptors as well. We conclude that RIP140 is a major suppressor of adipocyte oxidative metabolism and mitochondrial biogenesis, as well as a negative regulator of whole-body glucose tolerance and energy expenditure in mice.


Nature Genetics | 2016

Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas

Joshua D. Campbell; Anton Alexandrov; Jaegil Kim; Jeremiah Wala; Alice H. Berger; Chandra Sekhar Pedamallu; Sachet A. Shukla; Guangwu Guo; Angela N. Brooks; Bradley A. Murray; Marcin Imielinski; Xin Hu; Shiyun Ling; Rehan Akbani; Mara Rosenberg; Carrie Cibulskis; Eric A. Collisson; David J. Kwiatkowski; Michael S. Lawrence; John N. Weinstein; Roel G.W. Verhaak; Catherine J. Wu; Peter S. Hammerman; Andrew D. Cherniack; Gad Getz; Maxim N. Artyomov; Robert D. Schreiber; Ramaswamy Govindan; Matthew Meyerson

To compare lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SqCC) and to identify new drivers of lung carcinogenesis, we examined the exome sequences and copy number profiles of 660 lung ADC and 484 lung SqCC tumor–normal pairs. Recurrent alterations in lung SqCCs were more similar to those of other squamous carcinomas than to alterations in lung ADCs. New significantly mutated genes included PPP3CA, DOT1L, and FTSJD1 in lung ADC, RASA1 in lung SqCC, and KLF5, EP300, and CREBBP in both tumor types. New amplification peaks encompassed MIR21 in lung ADC, MIR205 in lung SqCC, and MAPK1 in both. Lung ADCs lacking receptor tyrosine kinase–Ras–Raf pathway alterations had mutations in SOS1, VAV1, RASA1, and ARHGAP35. Regarding neoantigens, 47% of the lung ADC and 53% of the lung SqCC tumors had at least five predicted neoepitopes. Although targeted therapies for lung ADC and SqCC are largely distinct, immunotherapies may aid in treatment for both subtypes.


Cancer Discovery | 2016

Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting

Andrew J. Aguirre; Robin M. Meyers; Barbara A. Weir; Francisca Vazquez; Cheng-Zhong Zhang; Uri Ben-David; April Cook; Gavin Ha; William F. Harrington; Mihir Doshi; Maria Kost-Alimova; Stanley Gill; Han Xu; Levi D. Ali; Guozhi Jiang; Sasha Pantel; Yenarae Lee; Amy Goodale; Andrew D. Cherniack; Coyin Oh; Gregory V. Kryukov; Glenn S. Cowley; Levi A. Garraway; Kimberly Stegmaier; Charles W. M. Roberts; Todd R. Golub; Matthew Meyerson; David E. Root; Aviad Tsherniak; William C. Hahn

UNLABELLED The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. SIGNIFICANCE We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803.


Cancer Cell | 2016

Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

Siyuan Zheng; Andrew D. Cherniack; Ninad Dewal; Richard A. Moffitt; Ludmila Danilova; Bradley A. Murray; Antonio M. Lerario; Tobias Else; Theo Knijnenburg; Giovanni Ciriello; Seungchan Kim; Guillaume Assié; Olena Morozova; Rehan Akbani; Juliann Shih; Katherine A. Hoadley; Toni K. Choueiri; Jens Waldmann; Ozgur Mete; Robertson Ag; Hsin-Ta Wu; Benjamin J. Raphael; Shao L; Matthew Meyerson; Michael J. Demeure; Felix Beuschlein; Anthony J. Gill; Stan B. Sidhu; Madson Q. Almeida; Maria Candida Barisson Villares Fragoso

We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1

Wenchu Lin; Jian Cao; Jiayun Liu; Michael L. Beshiri; Yuko Fujiwara; Joshua M. Francis; Andrew D. Cherniack; Christoph Geisen; Lauren P. Blair; Mike R. Zou; Xiaohua Shen; Dan Kawamori; Zongzhi Liu; Chiara Grisanzio; Hideo Watanabe; Yoji Andrew Minamishima; Qing Zhang; Rohit N. Kulkarni; Sabina Signoretti; Scott J. Rodig; Roderick T. Bronson; Stuart H. Orkin; David Tuck; Elizaveta V. Benevolenskaya; Matthew Meyerson; William G. Kaelin; Qin Yan

Aberrations in epigenetic processes, such as histone methylation, can cause cancer. Retinoblastoma binding protein 2 (RBP2; also called JARID1A or KDM5A) can demethylate tri- and dimethylated lysine 4 in histone H3, which are epigenetic marks for transcriptionally active chromatin, whereas the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor promotes H3K4 methylation. Previous studies suggested that inhibition of RBP2 contributed to tumor suppression by the retinoblastoma protein (pRB). Here, we show that genetic ablation of Rbp2 decreases tumor formation and prolongs survival in Rb1+/− mice and Men1-defective mice. These studies link RBP2 histone demethylase activity to tumorigenesis and nominate RBP2 as a potential target for cancer therapy.


Nature Genetics | 2016

Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers

Xiaoyang Zhang; Peter S. Choi; Joshua M. Francis; Marcin Imielinski; Hideo Watanabe; Andrew D. Cherniack; Matthew Meyerson

Whole-genome analysis approaches are identifying recurrent cancer-associated somatic alterations in noncoding DNA regions. We combined somatic copy number analysis of 12 tumor types with tissue-specific epigenetic profiling to identify significant regions of focal amplification harboring super-enhancers. Copy number gains of noncoding regions harboring super-enhancers near KLF5, USP12, PARD6B and MYC are associated with overexpression of these cancer-related genes. We show that two distinct focal amplifications of super-enhancers 3′ to MYC in lung adenocarcinoma (MYC-LASE) and endometrial carcinoma (MYC-ECSE) are physically associated with the MYC promoter and correlate with MYC overexpression. CRISPR/Cas9-mediated repression or deletion of a constituent enhancer within the MYC-LASE region led to significant reductions in the expression of MYC and its target genes and to the impairment of anchorage-independent and clonogenic growth, consistent with an oncogenic function. Our results suggest that genomic amplification of super-enhancers represents a common mechanism to activate cancer driver genes in multiple cancer types.

Collaboration


Dive into the Andrew D. Cherniack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine A. Hoadley

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rehan Akbani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John N. Weinstein

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael P. Czech

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge