Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reinhard Beichel is active.

Publication


Featured researches published by Reinhard Beichel.


Magnetic Resonance Imaging | 2012

3D Slicer as an image computing platform for the Quantitative Imaging Network

Andriy Fedorov; Reinhard Beichel; Jayashree Kalpathy-Cramer; Julien Finet; Jean Christophe Fillion-Robin; Sonia Pujol; Christian Bauer; Dominique Jennings; Fiona M. Fennessy; Milan Sonka; John M. Buatti; Stephen R. Aylward; James V. Miller; Steve Pieper; Ron Kikinis

Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future directions that can further facilitate development and validation of imaging biomarkers using 3D Slicer.


IEEE Computer Graphics and Applications | 2006

Liver Surgery Planning Using Virtual Reality

Bernhard Reitinger; Alexander Bornik; Reinhard Beichel; Dieter Schmalstieg

We have developed LiverPlanner, a virtual liver surgery planning system that uses high-level image analysis algorithms and virtual reality technology to help physicians find the best resection plan for each individual patient. Preliminary user studies of LiverPlanner show that the proposed tools are well accepted by doctors and lead to much shorter planning times


IEEE Transactions on Medical Imaging | 2012

Extraction of Airways From CT (EXACT'09)

Pechin Lo; Bram van Ginneken; Joseph M. Reinhardt; Tarunashree Yavarna; Pim A. de Jong; Benjamin Irving; Catalin I. Fetita; Margarete Ortner; Romulo Pinho; Jan Sijbers; Marco Feuerstein; Anna Fabijańska; Christian Bauer; Reinhard Beichel; Carlos S. Mendoza; Rafael Wiemker; Jaesung Lee; Anthony P. Reeves; Silvia Born; Oliver Weinheimer; Eva M. van Rikxoort; Juerg Tschirren; Kensaku Mori; Benjamin L. Odry; David P. Naidich; Ieneke J. C. Hartmann; Eric A. Hoffman; Mathias Prokop; Jesper Holst Pedersen; Marleen de Bruijne

This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate fifteen different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of twenty chest computed tomography (CT) scans of subjects ranging from healthy volunteers to patients with severe pathologies, scanned at different sites, with different CT scanner brands, models, and scanning protocols. Three performance measures covering different aspects of segmentation quality were computed for all participating algorithms. Results from the evaluation showed that no single algorithm could extract more than an average of 74% of the total length of all branches in the reference standard, indicating substantial differences between the algorithms. A fusion scheme that obtained superior results is presented, demonstrating that there is complementary information provided by the different algorithms and there is still room for further improvements in airway segmentation algorithms.


IEEE Transactions on Medical Imaging | 2012

Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach

Shanhui Sun; Christian Bauer; Reinhard Beichel

Segmentation of lungs with (large) lung cancer regions is a nontrivial problem. We present a new fully automated approach for segmentation of lungs with such high-density pathologies. Our method consists of two main processing steps. First, a novel robust active shape model (RASM) matching method is utilized to roughly segment the outline of the lungs. The initial position of the RASM is found by means of a rib cage detection method. Second, an optimal surface finding approach is utilized to further adapt the initial segmentation result to the lung. Left and right lungs are segmented individually. An evaluation on 30 data sets with 40 abnormal (lung cancer) and 20 normal left/right lungs resulted in an average Dice coefficient of 0.975±0.006 and a mean absolute surface distance error of 0.84±0.23 mm, respectively. Experiments on the same 30 data sets showed that our methods delivered statistically significant better segmentation results, compared to two commercially available lung segmentation approaches. In addition, our RASM approach is generally applicable and suitable for large shape models.


Medical Image Analysis | 2010

Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts

Christian Bauer; Thomas Pock; Erich Sorantin; Horst Bischof; Reinhard Beichel

The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding shape priors are generated by using a bottom-up identification of tubular objects combined with a top-down grouping of these objects into complete tree structures. The grouping step allows us to separate interwoven trees and to handle local disturbances. Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example aneurysms.


IEEE Transactions on Medical Imaging | 2005

Robust active appearance models and their application to medical image analysis

Reinhard Beichel; Horst Bischof; Franz Leberl; Milan Sonka

Active appearance models (AAMs) have been successfully used for a variety of segmentation tasks in medical image analysis. However, gross disturbances of objects can occur in routine clinical setting caused by pathological changes or medical interventions. This poses a problem for AAM-based segmentation, since the method is inherently not robust. In this paper, a novel robust AAM (RAAM) matching algorithm is presented. Compared to previous approaches, no assumptions are made regarding the kind of gray-value disturbance and/or the expected magnitude of residuals during matching. The method consists of two main stages. First, initial residuals are analyzed by means of a mean-shift-based mode detection step. Second, an objective function is utilized for the selection of a mode combination not representing the gross outliers. We demonstrate the robustness of the method in a variety of examples with different noise conditions. The RAAM performance is quantitatively demonstrated in two substantially different applications, diaphragm segmentation and rheumatoid arthritis assessment. In all cases, the robust method shows an excellent behavior, with the new method tolerating up to 50% object area covered by gross gray-level disturbances.


medical image computing and computer assisted intervention | 2007

A duality based algorithm for TV-L¹-optical-flow image registration

Thomas Pock; Martin Urschler; Christopher Zach; Reinhard Beichel; Horst Bischof

Nonlinear image registration is a challenging task in the field of medical image analysis. In many applications discontinuities may be present in the displacement field, and intensity variations may occur. In this work we therefore utilize an energy functional which is based on Total Variation regularization and a robust data term. We propose a novel, fast and stable numerical scheme to find the minimizer of this energy. Our approach combines a fixed-point procedure derived from duality principles combined with a fast thresholding step. We show experimental results on synthetic and clinical CT lung data sets at different breathing states as well as registration results on inter-subject brain MRIs.


IEEE Transactions on Medical Imaging | 2012

Comments on “Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy”

Tony Shepherd; Mika Teräs; Reinhard Beichel; Ronald Boellaard; Michel Bruynooghe; Volker Dicken; Mark J. Gooding; Peter J. Julyan; John Aldo Lee; Sébastien Lefèvre; Michael Mix; Valery Naranjo; Xiaodong Wu; Habib Zaidi; Ziming Zeng; Heikki Minn

The impact of PET on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the illdefinition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasise spatial accuracy and present a new metric that addresses the lack of unique ground truth. 30 methods are used at 13 different institutions to contour functional VOIs in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualisation of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm.


American Journal of Respiratory and Critical Care Medicine | 2013

Air Trapping and Airflow Obstruction in Newborn Cystic Fibrosis Piglets

Ryan J. Adam; Andrew S. Michalski; Christian Bauer; Mahmoud H. Abou Alaiwa; Thomas J. Gross; Maged Awadalla; Drake C. Bouzek; Nicholas D. Gansemer; Peter J. Taft; Mark J. Hoegger; Amit Diwakar; Matthias Ochs; Joseph M. Reinhardt; Eric A. Hoffman; Reinhard Beichel; David K. Meyerholz; David A. Stoltz

RATIONALE Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. OBJECTIVES To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. METHODS On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. MEASUREMENTS AND MAIN RESULTS On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. CONCLUSIONS The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.


scandinavian conference on image analysis | 2005

A novel robust tube detection filter for 3d centerline extraction

Thomas Pock; Reinhard Beichel; Horst Bischof

Centerline extraction of tubular structures such as blood vessels and airways in 3D volume data is of vital interest for applications involving registration, segmentation and surgical planing. In this paper, we propose a robust method for 3D centerline extraction of tubular structures. The method is based on a novel multiscale medialness function and additionally provides an accurate estimate of tubular radius. In contrast to other approaches, the method does not need any user selected thresholds and provides a high degree of robustness. For comparison and performance evaluation, we are using both synthetic images from a public database and a liver CT data set. Results show the advantages of the proposed method compared with the methods of Frangi et al. and Krissian et al.

Collaboration


Dive into the Reinhard Beichel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Bornik

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Reitinger

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Erich Sorantin

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Horst Bischof

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franz Leberl

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Werkgartner

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge