Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reinhild Kappelhoff is active.

Publication


Featured researches published by Reinhild Kappelhoff.


Biological Chemistry | 2004

Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors.

Christopher M. Overall; Eric M. Tam; Reinhild Kappelhoff; Andrea R. Connor; Tom Ewart; Charlotte J. Morrison; Xose S. Puente; Carlos López-Otín; Arun Seth

Abstract The biological role of most proteases in vivo is largely unknown. Therefore, to develop robust techniques to analyze the protease degradome in cells and tissues and to elucidate their substrate degradomes we have developed a dedicated and complete human protease and inhibitor microarray that we have called the CLIP-CHIP. Oligonucleotides (70-mers) for identifying all 715 human proteases, inactive homologs and inhibitors were spotted in triplicate onto glass slides with a dedicated subarray containing oligonucleotides for specific human breast carcinoma genes. Initial analyses revealed the elevated expression of a number of proteases in invasive ductal cell carcinoma including ADAMTS17, carboxypeptidases A5 and M, tryptasegamma and matriptase-2. Matrix metalloproteinases (MMPs) showed a restricted expression pattern in both normal and cancerous breast tissues with most expressed at low levels. However, of the several MMPs expressed in significant quantities, the carcinoma samples showed only slightly elevated amounts other than for MMP-28 which was strongly elevated. To discover new protease substrates we developed a novel yeast twohybrid approach we term inactive catalytic domain capture (ICDC). Here, an inactive mutant protease catalytic domain lacking the propeptide was used as a yeast two hybrid bait to screen a human fibroblast cDNA library for interactor proteins as a substrate trap. Wntinduced signaling protein-2 (WISP-2) was identified by ICDC and was biochemically confirmed as a new MMP substrate. In another approach we used isotopecoded affinity tag (ICAT) labeling with tandem mass spectrometry to quantitate the levels of secreted or shed extracellular proteins in MDAMB-231 breast carcinoma cell cultures in the presence or absence of membrane type 1-MMP (MT1-MMP) overexpression. By this proteomic approach we identified and biochemically confirmed that IL-8, the serine protease inhibitor SLPI, the death receptor-6, proTNFα and CTGF are novel substrates of MT1-MMP. The utility and quantitative nature of ICAT with MS/MS analysis as a new screen for protease substrate discovery based on detection of cleaved or shed substrate products should be readily adaptable to other classes of protease for assessing proteolytic function in a cellular context.


Molecular & Cellular Proteomics | 2011

Proteomic Analyses Reveal an Acidic Prime Side Specificity for the Astacin Metalloprotease Family Reflected by Physiological Substrates

Christoph Becker-Pauly; Olivier Barré; Oliver Schilling; Ulrich auf dem Keller; Anke Ohler; Claudia Broder; André Schütte; Reinhild Kappelhoff; Walter Stöcker; Christopher M. Overall

Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, meprin α, meprin β, and LAST_MAM proteases exhibit a strong preference for aspartate in the peptide (P)1′ position because of a conserved positively charged residue in the active cleft subsite (S)1′. This unparalleled specificity has not been found for other families of extracellular proteases. Interestingly, cleavage specificity is also strongly influenced by proline in P2′ or P3′ leading to a rare example of subsite cooperativity. This specificity characterizes the astacins as unique contributors to extracellular proteolysis that is corroborated by known cleavage sites in procollagen I+III, VEGF (vascular endothelial growth factor)-A, IL (interleukin)-1β, and pro-kallikrein 7. Indeed, cleavage sites in VEGF-A and pro-kallikrein 7 identified by terminal amine isotopic labeling of substrates matched those reported by Edman degradation. Moreover, the novel substrate FGF-19 was validated biochemically and shown to exhibit altered biological activity after meprin processing.


PLOS Biology | 2014

Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

Nikolaus Fortelny; Jennifer H. Cox; Reinhild Kappelhoff; Amanda E. Starr; Philipp F. Lange; Paul Pavlidis; Christopher M. Overall

Network modeling of interactions between proteases and their inhibitors reveals a network of new protein connections and cascades in the protease web.


Cancer Research | 2010

Novel Matrix Metalloproteinase Inhibitor [18F]Marimastat-Aryltrifluoroborate as a Probe for In vivo Positron Emission Tomography Imaging in Cancer

Ulrich auf dem Keller; Caroline L. Bellac; Ying Li; Yuanmei Lou; Philipp F. Lange; Richard Ting; Curtis Harwig; Reinhild Kappelhoff; Shoukat Dedhar; Michael J. Adam; Thomas J. Ruth; Francois Benard; David M. Perrin; Christopher M. Overall

Matrix metalloproteinases (MMP), strongly associated pathogenic markers of cancer, have undergone extensive drug development programs. Marimastat, a noncovalent MMP inhibitor, was conjugated with FITC to label cellular metalloproteinase cancer targets in MDA-MB-231 cells in vitro. Punctate localization of active transmembrane MMP14 was observed. For molecular-targeted positron emission tomography imaging of syngeneic 67NR murine mammary carcinoma in vivo, marimastat was (18)F-labeled using a shelf-stable arylboronic ester conjugate as a captor for aqueous [(18)F]fluoride in a novel, rapid one-step reaction at ambient temperature. [(18)F]Marimastat-aryltrifluoroborate localized to the tumors, with labeling being blocked in control animals first loaded with >10-fold excess unlabeled marimastat. The labeled drug cleared primarily via the hepatobiliary and gastrointestinal tract, with multiple animals imaged in independent experiments, confirming the ease of this new labeling strategy.


Diabetes | 2013

The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human

Eva Korpos; Nadir Kadri; Reinhild Kappelhoff; Jeannine Wegner; Christopher M. Overall; Ekkehard Weber; Dan Holmberg; Susanna Cardell; Lydia Sorokin

We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data demonstrate global loss of peri-islet BM and IM components only at sites of leukocyte infiltration into the islet. Stereological analyses reveal a correlation between incidence of insulitis and the number of islets showing loss of peri-islet BM versus islets with intact BMs, suggesting that leukocyte penetration of the peri-islet BM is a critical step. Protease- and protease inhibitor–specific microarray analyses (CLIP-CHIP) of laser-dissected leukocyte infiltrated and noninfiltrated pancreatic islets and confirmatory quantitative real time PCR and protein analyses identified cathepsin S, W, and C activity at sites of leukocyte penetration of the peri-islet BM in association with a macrophage subpopulation in NOD mice and human type 1 diabetic samples and, hence, potentially a novel therapeutic target specifically acting at the islet penetration stage. Interestingly, the peri-islet BM and underlying IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies.


Journal of Biological Chemistry | 2010

Proenzyme Structure and Activation of Astacin Metallopeptidase

Tibisay Guevara; Irene Yiallouros; Reinhild Kappelhoff; Steffen Bissdorf; Walter Stöcker; F. Xavier Gomis-Rüth

Proteolysis is regulated by inactive (latent) zymogens, with a prosegment preventing access of substrates to the active-site cleft of the enzyme. How latency is maintained often depends on the catalytic mechanism of the protease. For example, in several families of the metzincin metallopeptidases, a “cysteine switch” mechanism involves a conserved prosegment motif with a cysteine residue that coordinates the catalytic zinc ion. Another family of metzincins, the astacins, do not possess a cysteine switch, so latency is maintained by other means. We have solved the high resolution crystal structure of proastacin from the European crayfish, Astacus astacus. Its prosegment is the shortest structurally reported for a metallopeptidase, and it has a unique structure. It runs through the active-site cleft in reverse orientation to a genuine substrate. Moreover, a conserved aspartate, projected by a wide loop of the prosegment, coordinates the zinc ion instead of the catalytic solvent molecule found in the mature enzyme. Activation occurs through two-step limited proteolysis and entails major rearrangement of a flexible activation domain, which becomes rigid and creates the base of the substrate-binding cleft. Maturation also requires the newly formed N terminus to be precisely trimmed so that it can participate in a buried solvent-mediated hydrogen-bonding network, which includes an invariant active-site residue. We describe a novel mechanism for latency and activation, which shares some common features both with other metallopeptidases and with serine peptidases.


Journal of Biological Chemistry | 2011

Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis.

Charlotte J. Morrison; Stephanie Mancini; Jane Cipollone; Reinhild Kappelhoff; Calvin D. Roskelley; Christopher M. Overall

Dynamic reciprocal interactions between a tumor and its microenvironment impact both the establishment and progression of metastases. These interactions are mediated, in part, through proteolytic sculpting of the microenvironment, particularly by the matrix metalloproteinases, with both tumors and stroma contributing to the proteolytic milieu. Because bone is one of the predominant sites of breast cancer metastases, we used a co-culture system in which a subpopulation of the highly invasive human breast cancer cell line MDA-MB-231, with increased propensity to metastasize to bone, was overlaid onto a monolayer of differentiated osteoblast MC3T3-E1 cells in a mineralized osteoid matrix. CLIP-CHIP® microarrays identified changes in the complete protease and inhibitor expression profile of the breast cancer and osteoblast cells that were induced upon co-culture. A large increase in osteoblast-derived MMP-13 mRNA and protein was observed. Affymetrix analysis and validation showed induction of MMP-13 was initiated by soluble factors produced by the breast tumor cells, including oncostatin M and the acute response apolipoprotein SAA3. Significant changes in the osteoblast secretomes upon addition of MMP-13 were identified by degradomics from which six novel MMP-13 substrates with the potential to functionally impact breast cancer metastasis to bone were identified and validated. These included inactivation of the chemokines CCL2 and CCL7, activation of platelet-derived growth factor-C, and cleavage of SAA3, osteoprotegerin, CutA, and antithrombin III. Hence, the influence of breast cancer metastases on the bone microenvironment that is executed via the induction of osteoblast MMP-13 with the potential to enhance metastases growth by generating a microenvironmental amplifying feedback loop is revealed.


Arthritis & Rheumatism | 2010

Matrix metalloproteinase 8 deficiency in mice exacerbates inflammatory arthritis through delayed neutrophil apoptosis and reduced caspase 11 expression

Jennifer H. Cox; Amanda E. Starr; Reinhild Kappelhoff; Rendi Yan; Clive R. Roberts; Christopher M. Overall

OBJECTIVE Neutrophil accumulation is balanced by both cell infiltration and cell clearance, the controls of which are pivotal in the pathogenesis of rheumatoid arthritis (RA) and other chronic inflammatory diseases. Of the neutrophil-specific proteases, matrix metalloproteinase 8 (MMP-8; also known as neutrophil collagenase or collagenase 2) is traditionally viewed as being crucial for collagen degradation and hence cell migration and infiltration. This study was undertaken to examine the role of MMP-8 in a murine model of spontaneous RA. METHODS MMP-8(-/-) mice were backcrossed onto the Fas-defective MRL/lpr background, a mouse strain characterized by systemic autoimmunity including spontaneous autoimmune arthritis. Arthritis was induced with Freunds complete adjuvant and clinical disease and histologic parameters were assessed. RESULTS MMP-8(-/-) mice had earlier and more severe joint inflammation than their MMP-8(+/+) counterparts, coupled with a massive accumulation of neutrophils in synovial tissue, an unexpected result considering the commonly held view that MMP-8 has important extracellular matrix-degradative functions. Protease and protease inhibitor analysis of MMP-8(-/-) mouse neutrophils by CLIP-CHIP microarray revealed very little additional change in protease levels except for low expression of the apoptosis initiator caspase 11. This was confirmed at the protein level in unstimulated, lipopolysaccharide-treated, and interferon-γ-treated MMP-8(-/-) mouse neutrophils. Downstream of caspase 11, the activity of the apoptosis executioner caspase 3 was consequently reduced in MMP-8(-/-) mouse neutrophils, translating to reduced neutrophil apoptosis and cell accumulation compared with wild-type mouse cells. CONCLUSION Our findings indicate that MMP-8 is not essential for neutrophil migration in arthritis and likely other autoimmune diseases. Rather, MMP-8 is important for normal rates of neutrophil apoptosis and hence regulates cell clearance. Because MMP-8 deficiency leads to an exaggerated accumulation of neutrophil infiltrates due to delayed apoptosis and concurrent pathologic changes associated with dramatically increased neutrophil infiltration, MMP-8 is antiinflammatory and therefore a drug antitarget in the treatment of arthritis.


PLOS ONE | 2014

Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries.

Olivier Barré; Antoine Dufour; Ulrich Eckhard; Reinhild Kappelhoff; François Béliveau; Richard Leduc; Christopher M. Overall

Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.


Methods of Molecular Biology | 2010

Analysis of the Degradome with the CLIP-CHIP™ Microarray

Reinhild Kappelhoff; Ulrich auf dem Keller; Christopher M. Overall

The degradome microarray - CLIP-CHIP - is a dedicated and focused array that allows the analysis of all proteases, non-proteolytic homologs, and protease inhibitor gene transcripts in the human and murine genomes at the mRNA transcript level.Based on unique 70-mer oligonucleotides, designed to match parts of the sequence of known or predicted protease and inhibitor mRNAs in both species and printed on a glass-matrix surface, the CLIP-CHIP microarray can be used to analyze differentially expressed protease and inhibitor gene products and give expression profiles for any analyzed sample.

Collaboration


Dive into the Reinhild Kappelhoff's collaboration.

Top Co-Authors

Avatar

Christopher M. Overall

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Amanda E. Starr

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Antoine Dufour

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Caroline L. Bellac

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Philipp F. Lange

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Charlotte J. Morrison

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jennifer H. Cox

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ulrich Eckhard

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge