Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Remko A. Duursma is active.

Publication


Featured researches published by Remko A. Duursma.


New Phytologist | 2016

Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments

Richard J. Norby; Martin G. De Kauwe; Tomas F. Domingues; Remko A. Duursma; David S. Ellsworth; Daniel Goll; David M. Lapola; Kristina A. Luus; A. Rob MacKenzie; Belinda E. Medlyn; Ryan Pavlick; Anja Rammig; Benjamin Smith; Rick M. Thomas; Kirsten Thonicke; Anthony P. Walker; Sönke Zaehle

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.


New Phytologist | 2012

Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants

Remko A. Duursma; Daniel S. Falster; Fernando Valladares; Frank J. Sterck; Robert W. Pearcy; Christopher H. Lusk; Kerrie M. Sendall; M Nordenstahl; Nico C. Houter; Brian J. Atwell; Natalie Kelly; John W. G Kelly; Marion Liberloo; David T. Tissue; Belinda E. Medlyn; David S. Ellsworth

• Plant light interception efficiency is a crucial determinant of carbon uptake by individual plants and by vegetation. Our aim was to identify whole-plant variables that summarize complex crown architecture, which can be used to predict light interception efficiency. • We gathered the largest database of digitized plants to date (1831 plants of 124 species), and estimated a measure of light interception efficiency with a detailed three-dimensional model. Light interception efficiency was defined as the ratio of the hemispherically averaged displayed to total leaf area. A simple model was developed that uses only two variables, crown density (the ratio of leaf area to total crown surface area) and leaf dispersion (a measure of the degree of aggregation of leaves). • The model explained 85% of variation in the observed light interception efficiency across the digitized plants. Both whole-plant variables varied across species, with differences in leaf dispersion related to leaf size. Within species, light interception efficiency decreased with total leaf number. This was a result of changes in leaf dispersion, while crown density remained constant. • These results provide the basis for a more general understanding of the role of plant architecture in determining the efficiency of light harvesting.


Tree Physiology | 2013

Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature.

Honglang Duan; Jeffrey S. Amthor; Remko A. Duursma; Anthony P. O'Grady; Brendan Choat; David T. Tissue

Elevated [CO2] and temperature may alter the drought responses of tree seedling growth, photosynthesis, respiration and total non-structural carbohydrate (TNC) status depending on drought intensity and duration. Few studies have addressed these important climatic interactions or their consequences. We grew Eucalyptus globulus Labill. seedlings in two [CO2] concentrations (400 and 640 μl l(-1)) and two temperatures (28/17 and 32/21 °C) (day/night) in a sun-lit glasshouse, and grew them in well-watered conditions or exposed them to two drought treatments having undergone different previous water conditions (i.e., rewatered drought and sustained drought). Progressive drought in both drought treatments led to similar limitations in growth, photosynthesis and respiration, but reductions in TNC concentration were not observed. Elevated [CO2] ameliorated the impact of the drought during the moderate drought phase (i.e., Day 63 to Day 79) by increasing photosynthesis and enhancing leaf and whole-plant TNC content. In contrast, elevated temperature exacerbated the impact of the drought during the moderate drought phase by reducing photosynthesis, increasing leaf respiration and decreasing whole-plant TNC content. Extreme drought (i.e., Day 79 to Day 103) eliminated [CO2] and temperature effects on plant growth, photosynthesis and respiration. The combined effects of elevated [CO2] and elevated temperature on moderate drought stressed seedlings were reduced with progressive drought, with no sustained effects on growth despite greater whole-plant TNC content.


Plant Cell and Environment | 2014

Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings.

Honglang Duan; Remko A. Duursma; Guomin Huang; Renee A. Smith; Brendan Choat; Anthony P. O'Grady; David T. Tissue

It has been reported that elevated temperature accelerates the time-to-mortality in plants exposed to prolonged drought, while elevated [CO(2)] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO(2)] and temperature on the inter-dependent carbon and hydraulic characteristics associated with drought-induced mortality in Eucalyptus radiata seedlings grown in two [CO(2)] (400 and 640 μL L(-1)) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO(2)] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO(2)], may be the primary contributors to drought-induced seedling mortality under future climates.


Plant Cell and Environment | 2012

Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought

Kristine Y. Crous; Joana Zaragoza-Castells; David S. Ellsworth; Remko A. Duursma; Markus Löw; David T. Tissue; Owen K. Atkin

We investigated whether the degree of light inhibition of leaf respiration (R) differs among large Eucalyptus saligna grown in whole-tree chambers and exposed to present and future atmospheric [CO(2) ] and summer drought. Associated with month-to-month changes in temperature were concomitant changes in R in the light (R(light) ) and darkness (R(dark) ), with both processes being more temperature dependent in well-watered trees than under drought. Overall rates of R(light) and R(dark) were not significantly affected by [CO(2) ]. By contrast, overall rates of R(dark) (averaged across both [CO(2) ]) were ca. 25% lower under drought than in well-watered trees. During summer, the degree of light inhibition of leaf R was greater in droughted (ca. 80% inhibition) than well-watered trees (ca. 50% inhibition). Notwithstanding these treatment differences, an overall positive relationship was observed between R(light) and R(dark) when data from all months/treatments were combined (R(2)  = 0.8). Variations in R(light) were also positively correlated with rates of Rubisco activity and nitrogen concentration. Light inhibition resulted in a marked decrease in the proportion of light-saturated photosynthesis respired (i.e. reduced R/A(sat) ). Collectively, these results highlight the need to account for light inhibition when assessing impacts of global change drivers on the carbon economy of tree canopies.


Agricultural and Forest Meteorology | 2003

Leaf area index inferred from solar beam transmission in mixed conifer forests on complex terrain

Remko A. Duursma; John D. Marshall; Andrew P. Robinson

Abstract Forest process models are used to predict forest growth in a broad range of conditions. Because more than a quarter of the world’s forests are in mountainous regions, leaf area index (LAI) must frequently be estimated for forests in complex terrain. LAI is often inferred from canopy light transmission using various canopy models. Choice of a canopy model becomes especially problematic in complex terrain because the complex topography changes the path length of the solar beam through the canopy. For example, if solar elevations are expressed relative to the inclined surface, low elevations can occur on steep slopes at any time of the day, especially on surfaces facing north (in the northern hemisphere). We inferred LAI with various models at 36 plots in a mixed conifer forest in northern Idaho, USA, over a wide range of altitude and solar insolation. We compared these inferences to allometric estimates of LAI. We also tested a theoretical solution for path length on complex terrain. We conclude that the use of this path length correction does not improve agreement between ceptometer LAI and allometric LAI. However, residuals of the fit between transmission and allometric LAI were weakly related to path length ( P =0.052) and squared path length ( P =0.049) in a quadratic multiple linear regression. The best fits between ceptometer LAI and allometric LAI were both based on extinction coefficients corrected only for solar zenith angle; we recommend the Beer–Lambert model for its simplicity. We analyzed residuals of ceptometer estimates of LAI and determined that they were correlated with species composition. These results suggest that species composition might be used to predict extinction coefficients, though the current data set will not support such prediction. Thus, terrain complexity had only a minor influence on model predictions of leaf area index in these stands, simplifying the prediction of LAI in mountain forests.


Plant Cell and Environment | 2015

Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species

Markus Nolf; Danielle Creek; Remko A. Duursma; Joseph A. M. Holtum; Stefan Mayr; Brendan Choat

Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the worlds most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem.


Tree Physiology | 2011

Rooting depth explains [CO2] × drought interaction in Eucalyptus saligna

Remko A. Duursma; Craig V. M. Barton; Derek Eamus; Belinda E. Medlyn; David S. Ellsworth; Michael A. Forster; David T. Tissue; Sune Linder; Ross E. McMurtrie

Elevated atmospheric [CO(2)] (eC(a)) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eC(a) in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their C(a) treatments before a 4-month dry-down. Trees grown in eC(a) were smaller than those grown in ambient C(a) (aC(a)) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between C(a) treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eC(a) treatment compared with aC(a). Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eC(a) involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eC(a). It is essential that these interactions be considered when interpreting experimental results.


Ecology | 2015

BAAD: a biomass and allometry database for woody plants

Daniel S. Falster; Remko A. Duursma; Masae Iwamoto Ishihara; Diego R. Barneche; Richard G. FitzJohn; Angelica Vårhammar; Masahiro Aiba; Makoto Ando; Niels P. R. Anten; Michael J. Aspinwall; Jennifer L. Baltzer; Christopher Baraloto; Michael Battaglia; John J. Battles; Ben Bond-Lamberty; Michiel van Breugel; James S. Camac; Yves Claveau; Lluís Coll; Masako Dannoura; Sylvain Delagrange; Jean-Christophe Domec; Farrah R. Fatemi; Wang Feng; Veronica Gargaglione; Yoshiaki Goto; Akio Hagihara; Jefferson S. Hall; S. K. Hamilton; Degi Harja

Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub-sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross-section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the worlds vegetation.


Global Change Biology | 2016

Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability.

Remko A. Duursma; Teresa E. Gimeno; Matthias M. Boer; Kristine Y. Crous; Mark G. Tjoelker; David S. Ellsworth

Canopy leaf area, quantified by the leaf area index (L), is a crucial driver of forest productivity, water use and energy balance. Because L responds to environmental drivers, it can represent an important feedback to climate change, but its responses to rising atmospheric [CO2] and water availability of forests have been poorly quantified. We studied canopy leaf area dynamics for 28 months in a native evergreen Eucalyptus woodland exposed to free-air CO2 enrichment (the EucFACE experiment), in a subtropical climate where water limitation is common. We hypothesized that, because of expected stimulation of productivity and water-use efficiency, L should increase with elevated [CO2]. We estimated L from diffuse canopy transmittance, and measured monthly leaf litter production. Contrary to expectation, L did not respond to elevated [CO2]. We found that L varied between 1.10 and 2.20 across the study period. The dynamics of L showed a quick increase after heavy rainfall and a steady decrease during periods of low rainfall. Leaf litter production was correlated to changes in L, both during periods of decreasing L (when no leaf growth occurred) and during periods of increasing L (active shedding of old foliage when new leaf growth occurred). Leaf lifespan, estimated from mean L and total annual litter production, was up to 2 months longer under elevated [CO2] (1.18 vs. 1.01 years; P = 0.05). Our main finding that L was not responsive to elevated CO2 is consistent with other forest FACE studies, but contrasts with the positive response of L commonly predicted by many ecosystem models.

Collaboration


Dive into the Remko A. Duursma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge