Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Belinda E. Medlyn is active.

Publication


Featured researches published by Belinda E. Medlyn.


New Phytologist | 2014

Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies

Soenke Zaehle; Belinda E. Medlyn; Martin G. De Kauwe; Anthony P. Walker; Michael C. Dietze; Thomas Hickler; Yiqi Luo; Ying-Ping Wang; Bassil El-Masri; Peter E. Thornton; Atul K. Jain; Shusen Wang; David Wårlind; Ensheng Weng; William J. Parton; Colleen M. Iversen; Anne Gallet-Budynek; Heather R. McCarthy; Adrien C. Finzi; Paul J. Hanson; I. Colin Prentice; Ram Oren; Richard J. Norby

We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground–below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C–N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2, given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.


New Phytologist | 2014

Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites.

Martin G. De Kauwe; Belinda E. Medlyn; Sönke Zaehle; Anthony P. Walker; Michael C. Dietze; Ying Ping Wang; Yiqi Luo; Atul K. Jain; Bassil El-Masri; Thomas Hickler; David Wårlind; Ensheng Weng; William J. Parton; Peter E. Thornton; Shusen Wang; I. Colin Prentice; Shinichi Asao; Benjamin Smith; Heather R. McCarthy; Colleen M. Iversen; Paul J. Hanson; Jeffrey M. Warren; Ram Oren; Richard J. Norby

Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets.


Functional Plant Biology | 2008

Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis

Ross E. McMurtrie; Richard J. Norby; Belinda E. Medlyn; Roderick C. Dewar; David A. Pepper; Peter B. Reich; Craig V. M. Barton

Experimental evidence indicates that the stomatal conductance and nitrogen concentration ([N]) of foliage decline under CO2 enrichment, and that the percentage growth response to elevated CO2 is amplified under water limitation, but reduced under nitrogen limitation. We advance simple explanations for these responses based on an optimisation hypothesis applied to a simple model of the annual carbon-nitrogen-water economy of trees growing at a CO2-enrichment experiment at Oak Ridge, Tennessee, USA. The model is shown to have an optimum for leaf [N], stomatal conductance and leaf area index (LAI), where annual plant productivity is maximised. The optimisation is represented in terms of a trade-off between LAI and stomatal conductance, constrained by water supply, and between LAI and leaf [N], constrained by N supply. At elevated CO2 the optimum shifts to reduced stomatal conductance and leaf [N] and enhanced LAI. The model is applied to years with contrasting rainfall and N uptake. The predicted growth response to elevated CO2 is greatest in a dry, high-N year and is reduced in a wet, low-N year. The underlying physiological explanation for this contrast in the effects of water versus nitrogen limitation is that leaf photosynthesis is more sensitive to CO2 concentration ([CO2]) at lower stomatal conductance and is less sensitive to [CO2] at lower leaf [N].


Functional Plant Biology | 2003

Conversion of canopy intercepted radiation to photosynthate: review of modelling approaches for regional scales

Belinda E. Medlyn; Damian Barrett; Joe Landsberg; Peter Sands; Robert Clement

A fundamental component of most models of terrestrial carbon balance is an estimate of plant canopy photosynthetic uptake driven by radiation interception by the canopy. In this article, we review approaches used to model the conversion of radiation into photosynthate. As this process is well understood at the leaf-scale, the modelling problem is essentially one of up-scaling, to canopy, regional or global scale. Our review therefore focuses on issues of scaling, including model identification, parameterisation and validation at large scales. Four different approaches are commonly taken to modelling photosynthate production at large scales: the maximum productivity, resource-use efficiency, big-leaf, and sun-shade models. Models representing each of these approaches are discussed and model predictions compared with estimates of gross primary productivity derived from eddy covariance data measured above a Sitka spruce forest. The sun-shade model was found to perform best at all time scales considered. However, other models had significant advantages including simplicity of implementation and the ability to combine the model with remotely-sensed information on vegetation radiation interception. We conclude that all four approaches can be successfully used to model photosynthetic uptake and that the best approach in a given situation will depend on model objectives and data availability.


New Phytologist | 2013

Volatile isoprenoid emissions from plastid to planet

Sandy P. Harrison; Catherine Morfopoulos; K.G. Srikanta Dani; I. Colin Prentice; Almut Arneth; Brian J. Atwell; M. P. Barkley; Michelle R. Leishman; Francesco Loreto; Belinda E. Medlyn; Ülo Niinemets; Malcolm Possell; Josep Peñuelas; Ian J. Wright

Approximately 1-2% of net primary production by land plants is re-emitted to the atmosphere as isoprene and monoterpenes. These emissions play major roles in atmospheric chemistry and air pollution-climate interactions. Phenomenological models have been developed to predict their emission rates, but limited understanding of the function and regulation of these emissions has led to large uncertainties in model projections of air quality and greenhouse gas concentrations. We synthesize recent advances in diverse fields, from cell physiology to atmospheric remote sensing, and use this information to propose a simple conceptual model of volatile isoprenoid emission based on regulation of metabolism in the chloroplast. This may provide a robust foundation for scaling up emissions from the cellular to the global scale.


Ecological Applications | 2001

GROSS PRIMARY PRODUCTIVITY IN DUKE FOREST: MODELING SYNTHESIS OF CO2 EXPERIMENT AND EDDY–FLUX DATA

Yiqi Luo; Belinda E. Medlyn; Dafeng Hui; David S. Ellsworth; James F. Reynolds; Gabriel G. Katul

This study was designed to estimate gross primary productivity (GPP) in the Duke Forest at both ambient and elevated CO2 (ambient + 200 fLL/L) concentrations using a physiologically based canopy model. The model stratified the canopy of loblolly pine (Pinus taeda L.) forest into six layers and estimated photosynthesis in each layer according to the Farquhar sub model coupled with the Ball-Berry stomatal conductance sub model. The model was parameterized with a suite of physiological measurements, in- cluding leaf area index (LAI), leaf nitrogen (N) concentration, photosynthesis-N relation- ships, and stomatal conductance. The model was validated against measured leaf photo- synthesis and canopy carbon (C) fluxes estimated from eddy-covariance measurements (ECM). Application of this model to simulate canopy C fixation from 28 August 1996, the onset of CO2 fumigation, to 31 December 1998 suggested that elevation of atmospheric (CO2J to ambient + 200 fLL/L resulted in increase of canopy C fixation by 35% in 1996, 39% in 1997, and 43% in 1998. The modeled GPP and its response to elevated (CO2J were sensitive to parameter values of quantum yield of electron transport, leaf area index, and the vertical distribution of LAI within the canopy. Thus, further investigation on those parameters will help improve the precision of estimated ecosystem-scale C fluxes. Fur- thermore, comparison between the modeled and ECM-estimated canopy C fluxes suggested that soil moisture, in addition to air vapor pressure, controlled canopy photosynthesis during the drought period.


Journal of Ecology | 2015

Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges

Christopher Reyer; N.C. Brouwers; Anja Rammig; Barry W. Brook; Jackie Epila; Robert F. Grant; Milena Holmgren; Fanny Langerwisch; Sebastian Leuzinger; Wolfgang Lucht; Belinda E. Medlyn; Marion Pfeifer; Jörg Steinkamp; Mark C. Vanderwel; Hans Verbeeck; Dora M. Villela

1. Anthropogenic global change compromises forest resilience, with profound impacts to ecosystem functions and services. This synthesis paper reflects on the current understanding of forest resilience and potential tipping points under environmental change and explores challenges to assessing responses using experiments, observations and models. 2. Forests are changing over a wide range of spatio-temporal scales, but it is often unclear whether these changes reduce resilience or represent a tipping point. Tipping points may arise from interactions across scales, as processes such as climate change, land-use change, invasive species or deforestation gradually erode resilience and increase vulnerability to extreme events. Studies covering interactions across different spatio-temporal scales are needed to further our understanding. 3. Combinations of experiments, observations and process-based models could improve our ability to project forest resilience and tipping points under global change. We discuss uncertainties in changing CO2 concentration and quantifying tree mortality as examples. 4. Synthesis. As forests change at various scales, it is increasingly important to understand whether and how such changes lead to reduced resilience and potential tipping points. Understanding the mechanisms underlying forest resilience and tipping points would help in assessing risks to ecosystems and presents opportunities for ecosystem restoration and sustainable forest management.


New Phytologist | 2016

Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments

Richard J. Norby; Martin G. De Kauwe; Tomas F. Domingues; Remko A. Duursma; David S. Ellsworth; Daniel Goll; David M. Lapola; Kristina A. Luus; A. Rob MacKenzie; Belinda E. Medlyn; Ryan Pavlick; Anja Rammig; Benjamin Smith; Rick M. Thomas; Kirsten Thonicke; Anthony P. Walker; Sönke Zaehle

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.


New Phytologist | 2012

Nocturnal stomatal conductance responses to rising [CO2], temperature and drought

Melanie Zeppel; James D. Lewis; Brian Chaszar; Renee A. Smith; Belinda E. Medlyn; Travis E. Huxman; David T. Tissue

The response of nocturnal stomatal conductance (g(s,n)) to rising atmospheric CO(2) concentration ([CO(2)]) is currently unknown, and may differ from responses of daytime stomatal conductance (g(s,d)). Because night-time water fluxes can have a significant impact on landscape water budgets, an understanding of the effects of [CO(2)] and temperature on g(s,n) is crucial for predicting water fluxes under future climates. Here, we examined the effects of [CO(2)] (280, 400 and 640 μmol mol(-1)), temperature (ambient and ambient + 4°C) and drought on g(s,n,) and g(s,d) in Eucalyptus sideroxylon saplings. g(s,n) was substantially higher than zero, averaging 34% of g(s,d). Before the onset of drought, g(s,n) increased by 85% when [CO(2)] increased from 280 to 640 μmol mol(-1), averaged across both temperature treatments. g(s,n) declined with drought, but an increase in [CO(2)] slowed this decline. Consequently, the soil water potential at which g(s,n) was zero (Ψ(0)) was significantly more negative in elevated [CO(2)] and temperature treatments. g(s,d) showed inconsistent responses to [CO(2)] and temperature. g (s,n) may be higher in future climates, potentially increasing nocturnal water loss and susceptibility to drought, but cannot be predicted easily from g(s,d). Therefore, predictive models using stomatal conductance must account for both g(s,n) and g(s,d) when estimating ecosystem water fluxes.


Archive | 1997

Energy Conversion and Use in Forests: An Analysis of Forest Production in Terms of Radiation Utilisation Efficiency (ɛ)

J. J. Landsberg; S. D. Prince; P. G. Jarvis; Ross E. McMurtrie; R. Luxmoore; Belinda E. Medlyn

The linear relationship between the photosynthetically active solar radiation (PAR) absorbed by forest canopies (APAR) and the production of dry mass by forests provides a simple, robust model with only one parameter for the estimation of forest production. The slope of the relationship is normally denoted ɛ. The ɛ model has been developed from plant production studies and is soundly based physiologically. It has also evolved from remote sensing studies. Although the relationship between APAR and canopy photosynthesis may be highly variable over short periods, it remains constant over longer periods, such as months or seasons.

Collaboration


Dive into the Belinda E. Medlyn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross E. McMurtrie

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Norby

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony P. Walker

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ying-Ping Wang

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge