Renliang Zhang
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Renliang Zhang.
JAMA | 2008
Tamali Bhattacharyya; Stephen J. Nicholls; Eric J. Topol; Renliang Zhang; Xia Yang; David Schmitt; Xiaoming Fu; Mingyuan Shao; Danielle M. Brennan; Stephen G. Ellis; Marie Luise Brennan; Hooman Allayee; Aldons J. Lusis; Stanley L. Hazen
CONTEXT Paraoxonase 1 (PON1) is reported to have antioxidant and cardioprotective properties. The relationship between PON1 genotypes and functional activity with systemic measures of oxidative stress and cardiovascular disease (CVD) risk in humans has not been systematically investigated. OBJECTIVE To investigate the relationship of genetic and biochemical determinants of PON1 activity with systemic measures of oxidative stress and CVD risk in humans. DESIGN, SETTING, AND PARTICIPANTS The association between systemic PON1 activity measures and a functional polymorphism (Q192R) resulting in high PON1 activity with prevalent CVD and future major adverse cardiac events (myocardial infarction, stroke, or death) was evaluated in 1399 sequential consenting patients undergoing diagnostic coronary angiography between September 2002 and November 2003 at the Cleveland Clinic. Patients were followed up until December 2006. Systemic levels of multiple structurally defined fatty acid oxidation products were also measured by mass spectrometry in 150 age-, sex-, and race-matched patients and compared with regard to PON1 genotype and activity. MAIN OUTCOME MEASURES Relationship between a functional PON1 polymorphism and PON1 activity with global indices of systemic oxidative stress and risk of CVD. RESULTS The PON1 genotype demonstrated significant dose-dependent associations (QQ192 > QR192 > RR192) with decreased levels of serum PON1 activity and with increased levels of systemic indices of oxidative stress. Compared with participants with either the PON1 RR192 or QR192 genotype, participants with the QQ192 genotype demonstrated an increased risk of all-cause mortality (43/681 deaths [6.75%] in RR192 and QR192 and 62/584 deaths [11.1%] in QQ192; adjusted hazard ratio, 2.05; 95% confidence interval [CI], 1.32-3.18) and of major adverse cardiac events (88/681 events [13.6%] in RR192 and QR192 and 102/584 events [18.0%] in QQ192; adjusted hazard ratio, 1.48; 95% CI, 1.09-2.03; P = .01). The incidence of major adverse cardiac events was significantly lower in participants in the highest PON1 activity quartile (23/315 [7.3%]) and 235/324 [7.7%] for paraoxonase and arylesterase, respectively) compared with those in the lowest activity quartile (78/311 [25.1%] and 75/319 [23.5%]; P < .001 for paraoxonase and arylesterase, respectively). The adjusted hazard ratios for major adverse cardiac events between the highest and lowest PON1 activity quartiles were, for paraoxonase, 3.4 (95% CI, 2.1-5.5; P < .001) and for arylesterase, 2.9 (95% CI, 1.8-4.7; P < .001) and remained independent in multivariate analysis. CONCLUSION This study provides direct evidence for a mechanistic link between genetic determinants and activity of PON1 with systemic oxidative stress and prospective cardiovascular risk, indicating a potential mechanism for the atheroprotective function of PON1.
Nature Medicine | 2007
Eugene A. Podrez; Tatiana V. Byzova; Maria Febbraio; Robert G. Salomon; Yi Ma; Manojkumar Valiyaveettil; Eugenia Poliakov; Mingjiang Sun; Paula J. Finton; Brian R. Curtis; Juhua Chen; Renliang Zhang; Roy L. Silverstein; Stanley L. Hazen
Dyslipidemia is associated with a prothrombotic phenotype; however, the mechanisms responsible for enhanced platelet reactivity remain unclear. Proatherosclerotic lipid abnormalities are associated with both enhanced oxidant stress and the generation of biologically active oxidized lipids, including potential ligands for the scavenger receptor CD36, a major platelet glycoprotein. Using multiple mouse in vivo thrombosis models, we now demonstrate that genetic deletion of Cd36 protects mice from hyperlipidemia-associated enhanced platelet reactivity and the accompanying prothrombotic phenotype. Structurally defined oxidized choline glycerophospholipids that serve as high-affinity ligands for CD36 were at markedly increased levels in the plasma of hyperlipidemic mice and in the plasma of humans with low HDL levels, were able to bind platelets via CD36 and, at pathophysiological levels, promoted platelet activation via CD36. Thus, interactions of platelet CD36 with specific endogenous oxidized lipids play a crucial role in the well-known clinical associations between dyslipidemia, oxidant stress and a prothrombotic phenotype.
Journal of Experimental Medicine | 2006
Michael E. Greenberg; Mingjiang Sun; Renliang Zhang; Maria Febbraio; Roy L. Silverstein; Stanley L. Hazen
The phagocytosis of apoptotic cells within an organism is a critical terminal physiological process in programmed cell death. Evidence suggests that apoptotic cell engulfment and removal by macrophages is facilitated by phosphatidylserine (PS) displayed at the exofacial surface of the plasma membrane; however, neither the macrophage receptors responsible for PS recognition, nor characterization of the PS molecular species potentially involved, have been clearly defined. We show that the class B scavenger receptor CD36 plays an essential role in macrophage clearance of apoptotic cells in vivo. Further, macrophage recognition of apoptotic cells via CD36 is shown to occur via interactions with membrane-associated oxidized PS (oxPS) and, to a lesser extent, oxidized phosphatidylcholine, but not nonoxidized PS molecular species. Mass spectrometry analyses of oxPS species identify structures of candidate ligands for CD36 in apoptotic membranes that may facilitate macrophage recognition. Collectively, these results identify oxPS–CD36 interactions on macrophages as potential participants in a broad range of physiologic processes where macrophage-mediated engulfment of apoptotic cells is involved.
Circulation Research | 1999
Stanley L. Hazen; Renliang Zhang; Zhongzhou Shen; Weijia Wu; Eugene A. Podrez; Jennifer C. MacPherson; David Schmitt; Shome Nath Mitra; Chaitali Mukhopadhyay; Yonghong Chen; Peter A. Cohen; Henry F. Hoff; Husam M. Abu-Soud
Protein nitration and lipid peroxidation are implicated in the pathogenesis of atherosclerosis; however, neither the cellular mediators nor the reaction pathways for these events in vivo are established. In the present study, we examined the chemical pathways available to monocytes for generating reactive nitrogen species and explored their potential contribution to the protein nitration and lipid peroxidation of biological targets. Isolated human monocytes activated in media containing physiologically relevant levels of nitrite (NO(2)(-)), a major end product of nitric oxide ((*)NO) metabolism, nitrate apolipoprotein B-100 tyrosine residues and initiate LDL lipid peroxidation. LDL nitration (assessed by gas chromatography-mass spectrometry quantification of nitrotyrosine) and lipid peroxidation (assessed by high-performance liquid chromatography with online tandem mass spectrometric quantification of distinct products) required cell activation and NO(2)(-); occurred in the presence of metal chelators, superoxide dismutase (SOD), and scavengers of hypohalous acids; and was blocked by myeloperoxidase (MPO) inhibitors and catalase. Monocytes activated in the presence of the exogenous (*)NO generator PAPA NONOate (Z-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2- diolate) promoted LDL protein nitration and lipid peroxidation by a combination of pathways. At low rates of (*)NO flux, both protein nitration and lipid peroxidation were inhibited by catalase and peroxidase inhibitors but not SOD, suggesting a role for MPO. As rates of (*)NO flux increased, both nitrotyrosine formation and 9-hydroxy-10,12-octadecadienoate/9-hydroperoxy-10,12-octadecadieno ic acid production by monocytes became insensitive to the presence of catalase or peroxidase inhibitors, but they were increasingly inhibited by SOD and methionine, suggesting a role for peroxynitrite. Collectively, these results demonstrate that monocytes use distinct mechanisms for generating (*)NO-derived oxidants, and they identify MPO as a source of nitrating intermediates in monocytes.
Journal of Lipid Research | 2010
Ariel E. Feldstein; Rocio Lopez; Tarek Abu-Rajab Tamimi; Lisa Yerian; Yoon Mi Chung; Michael Berk; Renliang Zhang; Thomas M. McIntyre; Stanley L. Hazen
Oxidative stress is a core abnormality responsible for disease progression in nonalcoholic fatty liver disease (NAFLD). However, the pathways that contribute to oxidative damage in vivo are poorly understood. Our aims were to define the circulating profile of lipid oxidation products in NAFLD patients, the source of these products, and assess whether their circulating levels reflect histological changes in the liver. The levels of multiple structurally specific oxidized fatty acids, including individual hydroxy-eicosatetraenoic acids (HETE), hydroxy-octadecadenoic acids (HODE), and oxo-octadecadenoic acids (oxoODE), were measured by mass spectrometry in plasma at time of liver biopsy in an initial cohort of 73 and a validation cohort of 49 consecutive patients. Of the markers monitored, 9- and 13-HODEs and 9- and 13-oxoODEs, products of free radical-mediated oxidation of linoleic acid (LA), were significantly elevated in patients with nonalcoholic steatohepatitis (NASH), compared with patients with steatosis. A strong correlation was revealed between these oxidation products and liver histopathology (inflammation, fibrosis, and steatosis). Further analyses of HODEs showed equivalent R and S chiral distribution. A risk score for NASH (oxNASH) was developed in the initial clinical cohort and shown to have high diagnostic accuracy for NASH versus steatosis in the independent validation cohort. Subjects with elevated oxNASH levels (top tertile) were 9.7-fold (P < 0.0001) more likely to have NASH than those with low levels (bottom tertile). Collectively, these findings support a key role for free radical-mediated linoleic acid oxidation in human NASH and define a risk score, oxNASH, for noninvasive detection of the presence of NASH.
Journal of Clinical Investigation | 2013
Ying Huang; Zhiping Wu; Meliana Riwanto; Shengqiang Gao; Bruce S. Levison; Xiaodong Gu; Xiaoming Fu; Matthew A. Wagner; Christian Besler; Gary Gerstenecker; Renliang Zhang; Xin Min Li; Anthony J. DiDonato; Valentin Gogonea; W.H. Wilson Tang; Jonathan D. Smith; Edward F. Plow; Paul L. Fox; Diana M. Shih; Aldons J. Lusis; Edward A. Fisher; Joseph A. DiDonato; Ulf Landmesser; Stanley L. Hazen
Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein-associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL. Here, we demonstrate that MPO, PON1, and HDL bind to one another, forming a ternary complex, wherein PON1 partially inhibits MPO activity, while MPO inactivates PON1. MPO oxidizes PON1 on tyrosine 71 (Tyr71), a modified residue found in human atheroma that is critical for HDL binding and PON1 function. Acute inflammation model studies with transgenic and knockout mice for either PON1 or MPO confirmed that MPO and PON1 reciprocally modulate each others function in vivo. Further structure and function studies identified critical contact sites between APOA1 within HDL, PON1, and MPO, and proteomics studies of HDL recovered from acute coronary syndrome (ACS) subjects revealed enhanced chlorotyrosine content, site-specific PON1 methionine oxidation, and reduced PON1 activity. HDL thus serves as a scaffold upon which MPO and PON1 interact during inflammation, whereupon PON1 binding partially inhibits MPO activity, and MPO promotes site-specific oxidative modification and impairment of PON1 and APOA1 function.
Journal of Cell Science | 2012
Mihoko Suzuki; Motokazu Tsujikawa; Hiroyuki Itabe; Zhao Jiang Du; Ping Xie; Nagakazu Matsumura; Xiaoming Fu; Renliang Zhang; Koh-Hei Sonoda; Kensuke Egashira; Stanley L. Hazen; Motohiro Kamei
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries. Although pathogenic factors, such as oxidative stress, inflammation and genetics are thought to contribute to the development of AMD, little is known about the relationships and priorities between these factors. Here, we show that chronic photo-oxidative stress is an environmental factor involved in AMD pathogenesis. We first demonstrated that exposure to light induced phospholipid oxidation in the mouse retina, which was more prominent in aged animals. The induced oxidized phospholipids led to an increase in the expression of monocyte chemoattractant protein-1, which then resulted in macrophage accumulation, an inflammatory process. Antioxidant treatment prevented light-induced phospholipid oxidation and the subsequent increase of monocyte chemoattractant protein-1 (also known as C-C motif chemokine 2; CCL2), which are the beginnings of the light-induced changes. Subretinal application of oxidized phospholipids induced choroidal neovascularization, a characteristic feature of wet-type AMD, which was inhibited by blocking monocyte chemoattractant protein-1. These findings strongly suggest that a sequential cascade from photic stress to inflammatory processes through phospholipid oxidation has an important role in AMD pathogenesis. Finally, we succeeded in mimicking human AMD in mice with low-level, long-term photic stress, in which characteristic pathological changes, including choroidal neovascularization formation, were observed. Therefore, we propose a consecutive pathogenic pathway involving photic stress, oxidation of phospholipids and chronic inflammation, leading to angiogenesis. These findings add to the current understanding of AMD pathology and suggest protection from oxidative stress or suppression of the subsequent inflammation as new potential therapeutic targets for AMD.
Analytical Biochemistry | 2010
Takhar Kasumov; Hazel Huang; Yoon Mi Chung; Renliang Zhang; Arthur J. McCullough; John P. Kirwan
We present an optimized and validated liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the simultaneous measurement of concentrations of different ceramide species in biological samples. The method of analysis of tissue samples is based on Bligh and Dyer extraction, reverse-phase high-performance liquid chromatography separation, and multiple reaction monitoring of ceramides. Preparation of plasma samples also requires isolation of sphingolipids by silica gel column chromatography prior to LC-ESI-MS/MS analysis. The limits of quantification were in a range of 0.01-0.50ng/ml for distinct ceramides. The method was reliable for inter- and intraassay precision, accuracy, and linearity. Recoveries of ceramide subspecies from human plasma, rat liver, and muscle tissue were 78 to 91%, 70 to 99%, and 71 to 95%, respectively. The separation and quantification of several endogenous long-chain and very-long-chain ceramides using two nonphysiological odd chain ceramide (C17 and C25) internal standards was achieved within a single 21-min chromatographic run. The technique was applied to quantify distinct ceramide species in different rat tissues (muscle, liver, and heart) and in human plasma. Using this analytical technique, we demonstrated that a clinical exercise training intervention reduces the levels of ceramides in plasma of obese adults. This technique could be extended for quantification of other ceramides and sphingolipids with no significant modification.
Journal of Biological Chemistry | 2010
Lili Yang; Calivarathan Latchoumycandane; Megan R. McMullen; Brian T. Pratt; Renliang Zhang; Bettina G. Papouchado; Laura E. Nagy; Ariel E. Feldstein; Thomas M. McIntyre
Ethanol metabolism by liver generates short lived reactive oxygen species that damage liver but also affects distal organs through unknown mechanisms. We hypothesized that dissemination of liver oxidative stress proceeds through release of biologically active oxidized lipids to the circulation. We searched for these by tandem mass spectrometry in plasma of rats fed a Lieber-DeCarli ethanol diet or in patients with established alcoholic liver inflammation, steatohepatitis. We found a severalfold increase in plasma peroxidized phosphatidylcholines, inflammatory and pro-apoptotic oxidatively truncated phospholipids, and platelet-activating factor, a remarkably potent and pleiotropic inflammatory mediator, in rats chronically ingesting ethanol. Circulating peroxidized phospholipids also increased in humans with established steatohepatitis. However, reactive oxygen species generated by liver ethanol catabolism were not directly responsible for circulating oxidized phospholipids because the delayed appearance of these lipids did not correlate with ethanol exposure, hepatic oxidative insult, nor plasma alanine transaminase marking hepatocyte damage. Rather, circulating oxidized lipids correlated with steatohepatitis and tumor necrosis factor-α deposition in liver. The organic osmolyte 2-aminoethylsulfonic acid (taurine), which reduces liver endoplasmic reticulum stress and inflammation, even though it is not an antioxidant, abolished liver damage and the increase in circulating oxidized phospholipids. Thus, circulating oxidized phospholipids are markers of developing steatohepatitis temporally distinct from oxidant stress associated with hepatic ethanol catabolism. Previously, circulating markers of the critical transition to pathologic steatohepatitis were unknown. Circulating oxidatively truncated phospholipids are pro-inflammatory and pro-apoptotic mediators with the potential to systemically distribute the effect of chronic ethanol exposure. Suppressing hepatic inflammation, not ethanol catabolism, reduces circulating inflammatory and apoptotic agonists.
The FASEB Journal | 2003
Eugenia Poliakov; Marie Luise Brennan; Jennifer C. MacPherson; Renliang Zhang; Wei Sha; Laura Narine; Robert G. Salomon; Stanley L. Hazen
Isolevuglandins (isoLGs) are a family of reactive γ‐ketoaldehydes generated by free radical ox idation of arachidonate‐containing lipids through the isoprostane pathway. Elevated plasma levels of isoLG protein adducts are observed in subjects with athero sclerosis compared with age/gender‐matched controls. However, mechanisms for the generation of isoLGs in vivo are not established. Here we show that free radical‐induced peroxidation promoted by the myelo peroxidase (MPO)/H2O2 system of leukocytes serves as one mechanism for the generation of isoLGs in vivo. Using a Candida sepsis model of inflammation, we demonstrate 3.5‐ and 2.7‐fold increases in iso[4]LGE2 and isoLGE2 adducts of plasma proteins after pathogen exposure in wild‐type mice. Plasma levels of F2 isopros tanes were not significantly increased after pathogen challenge in this model. MPO knockout mice demon strated significant reductions (34%, P=0.003) in plasma levels of iso[4]LGE2 protein adducts after pathogen challenge compared with wild‐type mice. Mass spectrometry and immunochemical methods demonstrate MPO‐dependent formation of iso[4]LGE2 and isoLGE2 phospholipids and their corresponding isoLG protein adducts in model systems. The present studies thus identify MPO as one pathway for generation of isoLGs in vivo. They also suggest that long‐lived protein isoLG adducts may serve as an alternative integrated sensor of oxidant stress in vivo.—Poliakov, E., Brennan, M.‐L., MacPherson, J., Zhang, R., Sha, W., Narine, L., Salomon, R. G., Hazen, S. L. Isolevuglan dins, a novel class of isoprostenoid derivatives, function as integrated sensors of oxidant stress and are generated by myeloperoxidase in vivo. FASEB J. 17, 2209‐2220 (2003)