Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renyu Hu is active.

Publication


Featured researches published by Renyu Hu.


The Astrophysical Journal | 2014

PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. III. PHOTOCHEMISTRY AND THERMOCHEMISTRY IN THICK ATMOSPHERES ON SUPER EARTHS AND MINI NEPTUNES

Renyu Hu; Sara Seager

Some super Earths and mini Neptunes will likely have thick atmospheres that are not H_2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H_2-dominated atmospheres and non-H_2-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO_2 rather than CH_4 or CO in a H_2-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C_2H_2 and C_2H_4). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C_2H_2 features at 1.0 and 1.5 μm in transmission and C_2H_2 and C_2H_4 features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.


Nature | 2016

A map of the large day–night temperature gradient of a super-Earth exoplanet

Brice-Olivier Demory; Michaël Gillon; Julien de Wit; Nikku Madhusudhan; Emeline Bolmont; Kevin Heng; Tiffany Kataria; Nikole K. Lewis; Renyu Hu; Jessica E. Krick; Vlada Stamenković; Björn Benneke; Stephen R. Kane; D. Queloz

Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths—exoplanets with masses of one to ten times that of Earth—have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day–night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.


The Astrophysical Journal | 2013

PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H2S AND SO2 PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

Renyu Hu; Sara Seager; William Bains

Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H2S and SO2 are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H2, N2, and CO2 atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earths volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H2-dominated atmospheres for a wide range of particle diameters (0.1-1 μm), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N2 and CO2, optically thick haze, composed of elemental sulfur aerosols (S8) or sulfuric acid aerosols (H2SO4), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H2S and SO2 by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation space telescopes.


The Astrophysical Journal | 2013

Biosignature Gases in H2-dominated Atmospheres on Rocky Exoplanets

Sara Seager; William Bains; Renyu Hu

Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H2 atmospheres. In atmospheres with high CO2 levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H2 atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH3Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH3 and N2O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH4 and H2S, are not effective signs of life in an H2-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H2-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission spectra with the James Webb Space Telescope.


The Astrophysical Journal | 2012

THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

Renyu Hu; Bethany L. Ehlmann; Sara Seager

We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si‐O features in the thermal emission bands of 7‐13 μm and 15‐25 μm. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet’s reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (Ag(K) − Ag(J )): Ag(K) − Ag(J ) > 0.2 indicates that more than half of the planet’s surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; Ag(K) − Ag(J ) < −0.09 indicates that more than half of the planet’s surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than theJ-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.


Nature Communications | 2015

Tracing the fate of carbon and the atmospheric evolution of Mars.

Renyu Hu; David Michael Kass; Bethany L. Ehlmann; Yuk L. Yung

The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon (13C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric 13C/12C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure <1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time.


The Astrophysical Journal | 2015

A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER-7 B AND KEPLER-10 B

Renyu Hu; Brice-Olivier Demory; Sara Seager; Nikole K. Lewis

Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler- 7 b and the rocky planet Kepler- 10 b using the model. In general, we find that a hot exoplanets visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. Particularly for Kepler- 7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. The reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80%, and the cloud boundary should be located at 11° ± 3° to the west of the substellar point. We suggest single-band photometry surveys could yield valuable information on exoplanet atmospheres and surfaces.


The Astronomical Journal | 2017

Observing Exoplanets with High Dispersion Coronagraphy. I. The Scientific Potential of Current and Next-generation Large Ground and Space Telescopes

Ji Wang; Dimitri Mawet; Garreth Ruane; Renyu Hu; Björn Benneke

Direct imaging of exoplanets presents a formidable technical challenge owing to the small angular separation and high contrast between exoplanets and their host stars. High Dispersion Coronagraphy (HDC) is a pathway to achieve unprecedented sensitivity to Earth-like planets in the habitable zone. Here, we present a framework to simulate HDC observations and data analyses. The goal of these simulations is to perform a detailed analysis of the trade-off between raw star light suppression and spectral resolution for various instrument configurations, target types, and science cases. We predict the performance of an HDC instrument at Keck observatory for characterizing directly imaged gas-giant planets in near infrared bands. We also simulate HDC observations of an Earth-like planet using next-generation ground-based (TMT) and spaced-base telescopes (HabEx and LUVOIR). We conclude that ground-based ELTs are more suitable for HDC observations of an Earth-like planet than future space-based missions owing to the considerable difference in collecting area. For ground-based telescopes, HDC observations can detect an Earth-like planet in the habitable zone around an M dwarf star at 10


The Astronomical Journal | 2015

STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON

Avi Shporer; Renyu Hu

^{-4}


The Astrophysical Journal | 2015

Helium Atmospheres on Warm Neptune- and Sub-Neptune-sized Exoplanets and Applications to GJ 436b

Renyu Hu; Sara Seager; Yuk L. Yung

starlight suppression level. Compared to the 10

Collaboration


Dive into the Renyu Hu's collaboration.

Top Co-Authors

Avatar

Sara Seager

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuk L. Yung

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Gao

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Brown

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Bethany L. Ehlmann

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Björn Benneke

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge