Richard Bischof
Norwegian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Bischof.
The American Naturalist | 2012
Richard Bischof; Leif Egil Loe; Erling L. Meisingset; Barbara Zimmermann; Bram Van Moorter; Atle Mysterud
The forage-maturation hypothesis (FMH) states that herbivores migrate along a phenological gradient of plant development in order to maximize energy intake. Despite strong support for the FMH, the actual relationship between plant phenology and ungulate movement has remained enigmatic. We linked plant phenology (MODIS–normalized difference vegetation index [NDVI] data) and space use of 167 migratory and 78 resident red deer (Cervus elaphus), using a space-time-time matrix of “springness,” defined as the instantaneous rate of green-up. Consistent with the FMH, migrants experienced substantially greater access to early plant phenology than did residents. Deer were also more likely to migrate in areas where migration led to greater gains in springness. Rather than “surfing the green wave” during migration, migratory red deer moved rapidly from the winter to the summer range, thereby “jumping the green wave.” However, migrants and, to a lesser degree, residents did track phenological green-up through parts of the growing season by making smaller-scale adjustments in habitat use. Despite pronounced differences in their life histories, we found only marginal differences between male and female red deer in this study. Those differences that we did detect pointed toward additional constraints on female space-use tactics, such as those posed by calving and caring for dependent offspring. We conclude that whereas in some systems migration itself is a way to surf the green wave, in others it may simply be a means to reconnect with phenological spring at the summer range. In the light of ubiquitous anthropogenic environmental change, understanding the relationship between the green wave and ungulate space use has important consequences for the management and conservation of migratory ungulates and the phenomenon of migration itself.
Annals of The Entomological Society of America | 2000
Allen L. Szalanski; Derek S. Sikes; Richard Bischof; Mike Fritz
Abstract The burying beetle Nicrophorus americanus Olivier is an endangered species known to occur in disjunct populations in 6 states. Parsimony and maximum likelihood analysis of the nuclear ribosomal DNA first internal transcribed spacer (ITS1) sequences from 10 Nicrophorinae species revealed N. americanus to form a distinct clade with N. orbicollis Say. Genetic variation within and among 5 N. americanus populations, collected from South Dakota, Nebraska, Oklahoma, Arkansas, and Rhode Island, was studied. Ribosomal DNA ITS1 sequences from 14 beetles revealed 48 polymorphic and 20 informative nucleotide sites. N. americanus genetic divergence was between 0.16 and 4.76%. We found little evidence that these 5 populations have maintained unique genetic variation. No nucleotide sites were found that were diagnostic for any of the 5 populations examined, indicating that these populations may not be necessarily treated as separate, independent objects of conservation. However, further genetic investigation is warranted before translocations are attempted among the remaining populations of the American burying beetle.
Journal of Animal Ecology | 2009
Richard Bischof; Jon E. Swenson; Nigel G. Yoccoz; Atle Mysterud; Olivier Gimenez
1. The population dynamic and evolutionary effects of harvesting are receiving growing attention among biologists. Cause-specific estimates of mortality are necessary to determine and compare the magnitude and selectivity of hunting and other types of mortalities. In addition to the logistic and financial constraints on longitudinal studies, they are complicated by the fact that nonhunting mortality in managed populations usually consists of a mix of natural and human-caused factors. 2. We used multistate capture-recapture (MCR) models to estimate cause-specific survival of brown bears (Ursus arctos) in two subpopulations in Sweden over a 23-year period. In our analysis, we distinguished between legal hunting and other sources of mortality, such as intraspecific predation, accidents, poaching, and damage control removals. We also tested whether a strong increase in harvest quotas after 1997 in one of the subpopulations affected vulnerability to legal hunting. 3. Although only a fraction of mortalities other than legal hunting could be considered natural, this group of causes showed a general pattern of demographic selectivity expected from natural mortality regimes in populations of long-lived species, namely greater vulnerability of young animals. On the other hand, demographic effects on hunting vulnerability were weak and inconsistent. Our findings support the assumption that hunting and other mortalities were additive. 4. As expected, an increase in hunting pressure coincided with a correspondingly large increase in vulnerability to hunting in the affected subpopulation. Because even unbiased harvest can lead to selective pressures on life-history traits, such as size at primiparity, increasing harvest quotas may not only affect population growth directly, but could also alter optimal life-history strategies in brown bears and other carnivores. 5. Legal hunting is the most conveniently assessed and the most easily managed cause of mortality in many wild populations of large mammals. Although legal hunting is the single-most important cause of mortality for brown bears in Sweden, the combined mortality from other causes is of considerable magnitude and additionally shows greater selectivity in terms of sex and age than legal hunting. Therefore, its role in population dynamics and evolution should not be underestimated.
Journal of Wildlife Management | 2008
Richard Bischof; Rikako Fujita; Andreas Zedrosser; Arne Söderberg; Jon E. Swenson
Abstract We analyzed harvest data to describe hunting patterns and harvest demography of brown bears (Ursus arctos) killed in 3 geographic regions in Sweden during 1981–2004. In addition, we investigated the effects of a ban on baiting, instituted in 2001, and 2 major changes in the quota system: a switch to sex-specific quotas in 1992 and a return to total quotas in 1999. Brown bears (n = 887) were harvested specifically by bear hunters and incidentally by moose (Alces alces) hunters. Both hunter categories harvested bears 1) using dogs (37%), 2) by still hunting (30%), 3) with the use of bait (18%), and 4) by stalking (16%). The proportion of bears killed with different harvest methods varied among regions and between bear- and moose-oriented hunters. We found differences between male (52%) and female bears (48%) with respect to the variables that explained age. Moose-oriented hunters using still hunting harvested the youngest male bears. Bears harvested during the first management period (1981–1991) were older and had greater odds of being male than during the subsequent period. It appears that hunters harvesting bears in Sweden are less selective than their North American counterparts, possibly due to differences in the hunting system. When comparing the 4 years immediately prior to the ban on baiting with the 4 years following the ban, we found no differences in average age of harvested bears, sex ratio, or proportion of bears killed with stalking, still hunting, and hunting with dogs, suggesting that the ban on baiting in Sweden had no immediate effect on patterns of brown bear harvest demography and remaining hunting methods. As the demographic and evolutionary side effects of selective harvesting receive growing attention, wildlife managers should be aware that differences in harvest systems between jurisdictions may cause qualitative and quantitative differences in harvest biases.
Journal of Animal Ecology | 2010
Atle Mysterud; Richard Bischof
There is growing concern about the evolutionary consequences of human harvesting on phenotypic trait quality in wild populations. Undesirable consequences are especially likely with trophy hunting because of its strong bias for specific phenotypic trait values, such as large antlers in cervids and horns in bovids. Selective hunting can cause a decline in a trophy trait over time if it is heritable, thereby reducing the long-term sustainability of the activity itself. How can we build a sustainable trophy hunting tradition without the negative trait-altering effects? We used an individual-based model to explore whether selective compensatory culling of ‘low quality’ individuals at an early life stage can facilitate sustainability, as suggested by information from managed game populations in eastern and central Europe. Our model was rooted in empirical data on red deer, where heritability of sexual ornaments has been confirmed and phenotypic quality can be assessed by antler size in individuals as young as 1 year. Simulations showed that targeted culling of low-quality yearlings could counter the selective effects of trophy hunting on the distribution of the affected trait (e.g. antler or horn size) in prime-aged individuals. Assumptions of trait heritability and young-to-adult correlation were essential for compensation, but the model proved robust to various other assumptions and changes to input parameters. The simulation approach allowed us to verify responses as evolutionary changes in trait values rather than short-term consequences of altered age structure, density and viability selection. We conclude that evolutionarily enlightened management may accommodate trophy hunting. This has far reaching implications as income from trophy hunting is often channelled into local conservation efforts and rural economies. As an essential follow-up, we recommend an analysis of the effects of trophy hunting in conjunction with compensatory culling on the phenotypic and underlying genetic variance of the trophy trait.
Ecology | 2013
Andreas Zedrosser; Fanie Pelletier; Richard Bischof; Marco Festa-Bianchet; Jon E. Swenson
In iteroparous mammals, conditions experienced early in life may have long-lasting effects on lifetime reproductive success. Human-induced mortality is also an important demographic factor in many populations of large mammals and may influence lifetime reproductive success. Here, we explore the effects of early development, population density, and human hunting on survival and lifetime reproductive success in brown bear (Ursus arctos) females, using a 25-year database of individually marked bears in two populations in Sweden. Survival of yearlings to 2 years was not affected by population density or body mass. Yearlings that remained with their mother had higher survival than independent yearlings, partly because regulations prohibit the harvest of bears in family groups. Although mass as a yearling did not affect juvenile survival, it was positively associated with measures of lifetime reproductive success and individual fitness. The majority of adult female brown bear mortality (72%) in our study was due to human causes, mainly hunting, and many females were killed before they reproduced. Therefore, factors allowing females to survive several hunting seasons had a strong positive effect on lifetime reproductive success. We suggest that, in many hunted populations of large mammals, sport harvest is an important influence on both population dynamics and life histories.
Methods in Ecology and Evolution | 2014
Richard Bischof; Shoaib Hameed; Hussain Ali; Muhammad Kabir; Muhammad Younas; Kursheed A. Shah; Jaffar Ud Din; Muhammad Ali Nawaz
Summary Camera trapping, paired with analytical methods for estimating occupancy, abundance and other ecological parameters, can yield information with direct consequences for wildlife management and conservation. Although ecological information is the primary target of most camera trap studies, detectability influences every aspect from design to interpretation. Concepts and methods of time-to-event analysis are directly applicable to camera trapping, yet this statistical field has thus far been ignored as a way to analyse photographic capture data. To illustrate the use of time-to-event statistics and to better understand how photographic evidence accumulates, we explored patterns in two related measures of detectability: detection probability and time to detection. We analysed camera trap data for three sympatric carnivores (snow leopard, red fox and stone marten) in the mountains of northern Pakistan and tested predictions about patterns in detectability across species, sites and time. We found species-specific differences in the magnitude of detectability and the factors influencing it, reinforcing the need to consider determinants of detectability in study design and to account for them during analysis. Photographic detectability of snow leopard was noticeably lower than that of red fox, but comparable to detectability of stone marten. Site-specific attributes such as the presence of carnivore sign (snow leopard), terrain (snow leopard and red fox) and application of lures (red fox) influenced detectability. For the most part, detection probability was constant over time. Species-specific differences in factors determining detectability make camera trap studies targeting multiple species particularly vulnerable to misinterpretation if the hierarchical origin of the data is ignored. Investigators should consider not only the magnitude of detectability, but also the shape of the curve describing the cumulative process of photographic detection, as this has consequences for both determining survey effort and the selection of analytical models. Weighted time-to-event analysis can complement occupancy analysis and other hierarchical methods by providing additional tools for exploring camera trap data and testing hypotheses regarding the temporal aspect of photographic evidence accumulation.
Journal of Applied Ecology | 2012
Richard Bischof; Erlend B. Nilsen; Henrik Brøseth; Peep Männil; Jaānis Ozoliņš; John D. C. Linnell
Summary 1. Wildlife managers often rely on resource users, such as recreational or commercial hunters, to achieve management goals. The use of hunters to control wildlife populations is especially common for predators and ungulates, but managers cannot assume that hunters will always fill annual quotas set by the authorities. It has been advocated that resource management models should account for uncertainty in how harvest rules are realized, requiring that this implementation uncertainty be estimated. 2. We used a survival analysis framework and long‐term harvest data from large carnivore management systems in three countries (Estonia, Latvia and Norway) involving four species (brown bear, grey wolf, Eurasian lynx and wolverine) to estimate the performance of hunters with respect to harvest goals set by managers. 3. Variation in hunter quota‐filling performance was substantial, ranging from 40% for wolverine in Norway to nearly 100% for lynx in Latvia. Seasonal and regional variation was also high within country–species pairs. We detected a positive relationship between the instantaneous potential to fill a quota slot and the relative availability of the target species for both wolverine and lynx in Norway. 4. Survivor curves and hazards – with survival time measured as the time from the start of a season until a quota slot is filled – can indicate the extent to which managers can influence harvest through adjustments of season duration and quota limits. 5. Synthesis and applications. We investigated seven systems where authorities use recreational hunting to manage large carnivore populations. The variation and magnitude of deviation from harvest goals was substantial, underlining the need to incorporate implementation uncertainty into resource management models and decisions‐making. We illustrate how survival analysis can be used by managers to estimate the performance of resource users with respect to achieving harvest goals set by managers. The findings in this study come at an opportune time given the growing popularity of management strategy evaluation (MSE) models in fisheries and a push towards incorporating MSE into terrestrial harvest management.
Ecology | 2008
Andrés Ordiz; Ole-Gunnar Støen; Jon E. Swenson; Ilpo Kojola; Richard Bischof
In mammals, reproductive synchrony and reproductive suppression usually are found in social, group-living species, which often display hierarchical relationships among related animals. Some individuals, particularly younger, philopatric females beyond the age of sexual maturity, may not raise offspring because they are suppressed by other individuals. Although brown bears (Ursus arctos) are a solitary species, the existence of socially induced delayed primiparity of philopatric females has been documented. Here we show further evidence for interactions of a population-regulatory nature that are typically associated with social species. We found that an adult females probability of having cubs in a given year was influenced by whether or not her nearest neighboring adult female had cubs. At short distances (< or = 10 km) between the home range centroids of neighboring females, females with cubs had a negative effect on their neighboring females probability of having cubs of the year. At distances >10 km and < or = 20 km, the effect reversed, and it disappeared beyond 20 km. We argue that reproductive suppression is probably caused by resource competition among females living close to each other. Previously, similar population regulation mechanisms have been found only in group-living mammals. Thus, social interactions and behavior in solitary carnivores may be more flexible than usually assumed.
Biochemical Genetics | 2003
Jessica L. Petersen; Richard Bischof; Gary L. Krapu; Allen L. Szalanski
Three subspecies of sandhill crane (Grus canadensis) are recognized in the Midcontinental population, the lesser (Grus c. canadensis), Canadian (G. c. rowani), and greater (G. c. tabida). Blood samples collected on the populations primary spring staging area in Nebraska, U.S.A., were used to resolve the genetic relationship among these subspecies. Phylogenetic analysis of 27 G. canadensis, by DNA sequencing of a 675 bp region of the mtDNA, supports the subspecies designations of G. c. canadensis and G. c. tabida. G. c. rowani individuals were intermediate with each of the other two subspecies. Genetic divergence ranged from 6.5 to 14.5% between G. c. canadensis and G. c. tabida, 0.5 to 6.6% within G. c. canadensis, and 0.1 to 6.0% within G. c. tabida. Sufficient DNA for analysis was obtained from shed feathers indicating a source of genetic material that does not require the capture or sacrifice of the birds. Other genetic markers and methods, including satellite telemetry, are required for obtaining detailed information on crane distributions as needed to establish effective management units for the MCP.