Inger Maren Rivrud
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inger Maren Rivrud.
Journal of Animal Ecology | 2011
Floris M. van Beest; Inger Maren Rivrud; Leif Egil Loe; Jos M. Milner; Atle Mysterud
1. Most studies of intraspecific variation in home range size have investigated only a single or a few factors and often at one specific scale. However, considering multiple spatial and temporal scales when defining a home range is important as mechanisms that affect variation in home range size may differ depending on the scale under investigation. 2. We aim to quantify the relative effect of various individual, forage and climatic determinants of variation in home range size across multiple spatiotemporal scales in a large browsing herbivore, the moose (Alces alces), living at the southern limit of its distribution in Norway. 3. Total home range size and core home range areas were estimated for daily to monthly scales in summer and winter using both local convex hull (LoCoH) and fixed kernel home range methods. Variance in home range size was analysed using linear mixed-effects models for repeated measurements. 4. Reproductive status was the most influential individual-level factor explaining variance in moose home range size, with females accompanied by a calf having smaller summer ranges across all scales. Variation in home range size was strongly correlated with spatiotemporal changes in quantity and quality of natural food resources. Home range size decreased with increasing browse density at daily scales, but the relationship changed to positive at longer temporal scales. In contrast, browse quality was consistently negatively correlated with home range size except at the monthly scale during winter when depletion of high-quality forage occurs. Local climate affected total home range size more than core areas. Temperature, precipitation and snow depth influenced home range size directly at short temporal scales. 5. The relative effects of intrinsic and extrinsic determinants of variation in home range size differed with spatiotemporal scale, providing clear evidence that home range size is scale dependent in this large browser. Insight into the behavioural responses of populations to climatic stochasticity and forage variability is essential in view of current and future climate change, especially for populations with thermoregulatory restrictions living at the southern limit of their distribution.
Journal of Animal Ecology | 2010
Inger Maren Rivrud; Leif Egil Loe; Atle Mysterud
1. There is a rapidly growing literature on how climate affects populations of vertebrates. For large herbivorous mammals, most attention has been paid to demographic responses to climate variation. Much less information is available regarding how climate affects animal behaviour, i.e. the climate mechanisms. Further, the appropriate measurement scale of climate variables remains debated. Here, we investigate how local climate variables determine home range sizes at four temporal scales using the Börger-method on GPS telemetry data from 47 female red deer Cervus elaphus L. in Norway. 2. If local climate operates directly on the immediate activity level of the animal, we predict home range sizes to show season-specific variation on short temporal scale (weekly-daily) related to temperature and precipitation. If local climate operate indirectly through plant growth, we rather predict variation in home range sizes to be apparent on longer time scales (biweekly-monthly), and during summer only. 3. At all time scales home range size was positively correlated with temperature during winter and negatively during summer, while the effect of precipitation was season- and scale-specific, except when accumulating as snow. Extensive snow cover decreased home range size, indicating direct effects of climate. 4. The effects of local climate was weaker at the shortest time scales (weekly-daily) compared to the longest time scales (monthly-biweekly), while the effects of day length on home range size was only apparent on the monthly and daily scale. At the longest time scales variation in local climate had a large effect on home range size. This is consistent with climatic variables operating indirectly through plant growth, but we cannot exclude a certain direct effect even at longer time scales. 5. We show how local climate-home range size correlations measured over different temporal scales can be used to infer direct and indirect climate mechanisms. Insight on the behavioural basis of responses to climate enables more accurate predictions of possible nonlinear relationships to future global warming.
Journal of Applied Ecology | 2013
Inger Maren Rivrud; Krisztina Sonkoly; Róbert Lehoczki; Sándor Csányi; Geir Storvik; Atle Mysterud
Summary Human harvesting has a large impact on natural populations and may cause undesirable life-history changes. In wild ungulate populations, unrestricted trophy hunting may cause strong selection pressures resulting in evolutionary change towards smaller trophies. It has rarely been tested how harvesting selection varies in space and time, and whether directional hunter selection is sufficiently strong to induce long-term decreases in trophy size in century-scale data. We analysed two unique data sets of harvesting records spanning decade (1973–2008) and century scales (1881–2008) to identify changes in trophy size and how harvesting selection varies in space and time in red deer Cervus elaphus. We contrasted predictions from the trophy-hunting depletion, the restricted trophy hunting and the hunting pressure hypotheses. Foreign hunters selected older and larger males than local hunters, but selection patterns for age-specific trophy size between counties and over time were dynamic. Patterns of red deer trophy size development from exhibitions (representing the ‘upper tail’ of antler sizes) were remarkably similar across Hungary from 1881 to 2008. A weak decline in trophy size between 1881 and 1958 was followed by a strong increase in trophy size between 1958 and 1974, culminating in a period of stable antler tine numbers and a weak decline in beam length until 2008. We rejected the trophy hunting depletion hypothesis due to the increase in trophy size after a period of decline; patterns were most consistent with the hunting pressure hypothesis. Large increases in trophy size during 1958–1974 were likely due to a relief in hunting pressure due to implementation of strict management regulations allowing stags to grow old after the massive overharvesting during World War II, but we cannot exclude impacts from environmental factors, and that data from trophy exhibitions may underestimate trends. Synthesis and applications. Trophy hunting does not necessarily lead to a non-reversible decline in trophy size, even over century-long time-scales. To ensure sustainable trophy hunting management, we need to consider factors such as spatial and temporal refuges, compensatory culling, saving stags until prime-age culmination and higher prices for larger trophies.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Florian K. Diekert; Andries Richter; Inger Maren Rivrud; Atle Mysterud
Significance Wildlife populations in Europe and North America are regulated through hunting, as natural predators are still scarce. Therefore, wildlife is a social–ecological system with delicate feedbacks between the social and ecological subsystems. Both for population control and for evolution and because of cultural values, it is essential to understand how many and which animals are removed from the population. However, the question of how the social context influences the individual hunter’s decision to shoot or not to shoot an animal has not been addressed. We apply insights from economic search theory to explain how hunter selection is shaped by social constraints. We provide convincing evidence, using a unique dataset from deer hunting, that selectivity declines with more hunters competing and a shorter remaining season. Hunting is the predominant way of controlling many wildlife populations devoid of large carnivores. It subjects animals to mortality rates that far exceed natural rates and that differ markedly in which age, sex, or size classes are removed relative to those of natural predators. To explain the emerging selection pattern we develop behavioral microfoundations for a hunting model, emphasizing in particular the constraints given by the formal and informal norms, rules, and regulations that govern the hunter’s choice. We show how a shorter remaining season, competition among hunters, lower sighting probabilities, and higher costs all lead to lower reservation values, i.e., an increased likelihood of shooting a particular animal. Using a unique dataset on seen and shot deer from Norway, we test and confirm the theoretical predictions in a recreational and meat-motivated hunting system. To achieve sustainability, future wildlife management should account for this predictable selection pressure.
Ecology and Evolution | 2014
Inger Maren Rivrud; Erling L. Meisingset; Leif Egil Loe; Atle Mysterud
Most cervid populations in Europe and North America are managed through selective harvesting, often with age- and sex-specific quotas, with a large influence on the population growth rate. Less well understood is how prevailing weather affects harvesting selectivity and off-take indirectly through changes in individual animal and hunter behavior. The behavior and movement patterns of hunters and their prey are expected to be influenced by weather conditions. Furthermore, habitat characteristics like habitat openness are also known to affect movement patterns and harvesting vulnerability, but how much such processes affect harvest composition has not been quantified. We use harvest data from red deer (Cervus elaphus) to investigate how weather and habitat characteristics affect behavioral decisions of red deer and their hunters throughout the hunting season. More specifically, we look at how sex and age class, temperature, precipitation, moon phase, and day of week affect the probability of being harvested on farmland (open habitat), hunter effort, and the overall harvest numbers. Moon phase and day of week were the strongest predictors of hunter effort and harvest numbers, with higher effort during full moon and weekends, and higher numbers during full moon. In general, the effect of fall weather conditions and habitat characteristics on harvest effort and numbers varied through the season. Yearlings showed the highest variation in the probability of being harvested on farmland through the season, but there was no effect of sex. Our study is among the first to highlight that weather may affect harvesting patterns and off-take indirectly through animal and hunter behavior, but the interaction effects of weather and space use on hunter behavior are complicated, and seem less important than hunter preference and quotas in determining hunter selection and harvest off-take. The consideration of hunter behavior is therefore key when forming management rules for sustainable harvesting.
Nature Ecology and Evolution | 2018
Richard Bischof; Christophe Bonenfant; Inger Maren Rivrud; Andreas Zedrosser; Andrea Friebe; Tim Coulson; Atle Mysterud; Jon E. Swenson
Management of large carnivores is among the most controversial topics in natural resource administration. Regulated hunting is a centrepiece of many carnivore management programmes and, although a number of hunting effects on population dynamics, body-size distributions and life history in other wildlife have been observed, its effects on life history and demography of large carnivores remain poorly documented. We report results from a 30-year study of brown bears (Ursus arctos) analysed using an integrated hierarchical approach. Our study revealed that regulated hunting has severely disrupted the interplay between age-specific survival and environmental factors, altered the consequences of reproductive strategies, and changed reproductive values and life expectancy in a population of the world’s largest terrestrial carnivore. Protection and sustainable management have led to numerical recovery of several populations of large carnivores, but managers and policymakers should be aware of the extent to which regulated hunting may be influencing vital rates, thereby reshaping the life history of apex predators.A 30-year monitoring study of brown bears in Sweden documents the demographic impact of regulated hunting, which includes pronounced life history changes despite sustainable management.
Ecology and Evolution | 2017
Atle Mysterud; Brit Karen Vike; Erling L. Meisingset; Inger Maren Rivrud
Summary Large herbivores gain nutritional benefits from following the sequential flush of newly emergent, high‐quality forage along environmental gradients in the landscape, termed green wave surfing. Which landscape characteristics underlie the environmental gradient causing the green wave and to what extent landscape characteristics alone explain individual variation in nutritional benefits remain unresolved questions. Here, we combine GPS data from 346 red deer (Cervus elaphus) from four partially migratory populations in Norway with the satellite‐derived normalized difference vegetation index (NDVI), an index of plant phenology. We quantify whether migratory deer had access to higher quality forage than resident deer, how landscape characteristics within summer home ranges affected nutritional benefits, and whether differences in landscape characteristics could explain differences in nutritional gain between migratory and resident deer. We found that migratory red deer gained access to higher quality forage than resident deer but that this difference persisted even after controlling for landscape characteristics within the summer home ranges. There was a positive effect of elevation on access to high‐quality forage, but only for migratory deer. We discuss how the landscape an ungulate inhabits may determine its responses to plant phenology and also highlight how individual behavior may influence nutritional gain beyond the effect of landscape.
Journal of Applied Ecology | 2018
Erling L. Meisingset; Leif Egil Loe; Øystein Brekkum; Richard Bischof; Inger Maren Rivrud; Unni Støbet Lande; Barbara Zimmermann; Vebjørn Veiberg; Atle Mysterud
1. Population-level management is difficult to achieve if wildlife routinely crosses administrative boundaries, as is particularly frequent for migratory populations. However, the degree of mismatch between management units and scales at which ecological processes operate has rarely been quantified. Such insight is vital for delimiting functional population units of partially migratory species common in northern forest ecosystems. 2. We combined an extensive dataset of 412 GPS-marked red deer (Cervus elaphus) across Norway with information on the size and borders of two administrative levels, the governmental level (municipality) and landowner level (local management units; LMUs) to determine the timing and scale of mismatch between animal space use and management units. We analysed how landscape characteristics affected use of management units and the timing and likelihood of crossing borders between them, in an effort to delineate more appropriate units in various landscapes. 3. Median municipality size could potentially cover 70% of female and 62% of male annual ranges, while only 12% and 4% of LMUs were expansive enough to accommodate migratory routes in females and males, respectively. Red deer migrate along elevational gradients and are more likely to find both suitable lowland winter habitat and higher summer habitat within management units with variable topography. Consistent with this, the likelihood of border crossing decreased with increasing diversity of elevations. 4. Synthesis and applications. We demonstrate a considerable mismatch between animal space use and management units. Far-ranging movements and frequent administrative border crossings during autumn migration coincides with the period of active management (hunting season). Our study also highlights that, due to extensive movements of males, coordination of management aims may provide a more realistic avenue than increasing sizes of local management units. A more general insight is that the degree of mismatch between range use and management units depends on the season and landscape type. This needs to be accounted for when delimitating functional population units of migratory populations. This article is protected by copyright. All rights reserved.
Ecology | 2015
Inger Maren Rivrud; Richard Bischof; Erling L. Meisingset; Barbara Zimmermann; Leif Egil Loe; Atle Mysterud
Ecology | 2016
Inger Maren Rivrud; Marco Heurich; Philipp Krupczynski; Jörg Müller; Atle Mysterud