Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Eva is active.

Publication


Featured researches published by Richard Eva.


The Journal of Neuroscience | 2010

Rab11 and Its Effector Rab Coupling Protein Contribute to the Trafficking of beta 1 Integrins during Axon Growth in Adult Dorsal Root Ganglion Neurons and PC12 Cells

Richard Eva; Elisa Dassie; Patrick T. Caswell; Gunnar Dick; Charles ffrench-Constant; Jim C. Norman; James W. Fawcett

Integrins play an important part in axon growth, but integrin traffic in neurons is poorly understood. Expression of the tenascin-C-binding integrin α9 promotes axon regeneration. We have therefore studied the mechanism by which α9 integrin and its partner β1 are trafficked along axons and at the growth cone using adult DRG neurons and PC12 cells. We have focused on the small GTPase Rab11 and its effector Rab coupling protein (RCP), as they are involved in the long-range trafficking of β1 integrins in other cells. Rab11 colocalizes with α9 and other α integrins and with β1 integrin in growth cones and axons, and immunopurified Rab11 vesicles contain α9 and β1. Endocytosed β1 integrins traffic via Rab11. However, Rab11 vesicles in axons are generally static, and α9 integrins undergo bouts of movement during which they leave the Rab11 compartment. In growth cones, α9 and β1 overlap with RCP, particularly at the growth cone periphery. We show that β1 integrin trafficking during neurite outgrowth involves Rab11 and RCP, and that manipulation of these molecules alters surface integrin levels and axon growth, and can be used to enhance α9 integrin-dependent neurite outgrowth. Our data suggest that manipulation of trafficking via Rab11 and RCP could be a useful strategy for promoting integrin-dependent axonal regeneration.


The Journal of Neuroscience | 2012

ARF6 Directs Axon Transport and Traffic of Integrins and Regulates Axon Growth in Adult DRG Neurons

Richard Eva; Sarah Crisp; Jamie R. K. Marland; Jim C. Norman; Venkateswarlu Kanamarlapudi; Charles ffrench-Constant; James W. Fawcett

Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.


The Journal of Neuroscience | 2015

Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS.

Elske H.P. Franssen; Rong-Rong Zhao; Hiroaki Koseki; X Venkateswarlu Kanamarlapudi; Casper C. Hoogenraad; Richard Eva; James W. Fawcett

Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking.


Current Opinion in Neurobiology | 2014

Integrin signalling and traffic during axon growth and regeneration

Richard Eva; James W. Fawcett

Adult corticospinal tract axons do not regenerate because they have low intrinsic growth ability, and are exposed to inhibitory molecules after injury. PNS axons have a better regenerative capacity, mediated in part by integrins (extracellular matrix receptors). These are subject to complex regulation by signalling and trafficking. Recent studies have found that integrin mediated axon growth relies on signalling via focal adhesion molecules, and that integrins are inactivated by inhibitory molecules in the CNS. Forced activation of integrins can overcome inhibition and increase axon regeneration, however integrins are not transported into some CNS axons. Studies of PNS integrin traffic have identified molecules that can be manipulated to increase axonal integrin expression, suggesting strategies for repairing the injured spinal cord.


International Review of Neurobiology | 2012

Intrinsic mechanisms regulating axon regeneration: an integrin perspective.

Richard Eva; Melissa R. Andrews; Elske H.P. Franssen; James W. Fawcett

Adult central nervous system (CNS) axons fail to regenerate after injury because of inhibitory factors in the surrounding environment and a low intrinsic regenerative capacity. Axons in the adult peripheral nervous system have a higher regenerative capacity, due in part to the presence of certain integrins-receptors for the extracellular matrix. Integrins are critical for axon growth during the development of the nervous system but are absent from some adult CNS axons. Here, we discuss the intrinsic mechanisms that regulate axon regeneration and examine the role of integrins. As correct localization is paramount to integrin function, we further discuss the mechanisms that regulate integrin traffic toward the axonal growth cone.


Molecular and Cellular Neuroscience | 2015

Full length talin stimulates integrin activation and axon regeneration.

Chin Lik Tan; Jessica C. F. Kwok; Janosch P. Heller; Rong-Rong Zhao; Richard Eva; James W. Fawcett

Integrin function is regulated by activation involving conformational changes that modulate ligand-binding affinity and downstream signaling. Activation is regulated through inside-out signaling which is controlled by many signaling pathways via a final common pathway through kindlin and talin, which bind to the intracellular tail of beta integrins. Previous studies have shown that the axon growth inhibitory molecules NogoA and chondroitin sulfate proteoglycans (CSPGs) inactivate integrins. Overexpressing kindlin-1 in dorsal root ganglion (DRG) neurons activates integrins, enabling their axons to overcome inhibitory molecules in the environment, and promoting regeneration in vivo following dorsal root crush. Other studies have indicated that expression of the talin head alone or with kindlin can enhance integrin activation. Here, using adult rat DRG neurons, we investigate the effects of overexpressing various forms of talin on axon growth and integrin signaling. We found that overexpression of the talin head activated axonal integrins but inhibited downstream signaling via FAK, and did not promote axon growth. Similarly, co-expression of the talin head and kindlin-1 prevented the growth-promoting effect of kindlin-1, suggesting that the talin head acts as a form of dominant negative for integrin function. Using full-length talin constructs in PC12 cells we observed that neurite growth was enhanced by the expression of wild-type talin and more so by two ‘activated’ forms of talin produced by point mutation (on laminin and aggrecan–laminin substrates). Nevertheless, co-expression of full-length talin with kindlin did not promote neurite growth more than either molecule alone. In vivo, we find that talin is present in PNS axons (sciatic nerve), and also in CNS axons of the corticospinal tract.


eLife | 2017

Selective rab11 transport and the intrinsic regenerative ability of CNS axons.

Hiroaki Koseki; Matteo Donegà; Brian Yh Lam; Veselina Petrova; Susan van Erp; Giles S. H. Yeo; Jessica C. F. Kwok; Charles ffrench-Constant; Richard Eva; James W. Fawcett

Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration.


Journal of Cell Science | 2017

EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment

Richard Eva; Hiroaki Koseki; Venkateswarlu Kanamarlapudi; James W. Fawcett

ABSTRACT Central nervous system (CNS) axons lose their intrinsic ability to regenerate upon maturity, whereas peripheral nervous system (PNS) axons do not. A key difference between these neuronal types is their ability to transport integrins into axons. Integrins can mediate PNS regeneration, but are excluded from adult CNS axons along with their Rab11 carriers. We reasoned that exclusion of the contents of Rab11 vesicles including integrins might contribute to the intrinsic inability of CNS neurons to regenerate, and investigated this by performing laser axotomy. We identify a novel regulator of selective axon transport and regeneration, the ARF6 guanine-nucleotide-exchange factor (GEF) EFA6 (also known as PSD). EFA6 exerts its effects from a location within the axon initial segment (AIS). EFA6 does not localise at the AIS in dorsal root ganglion (DRG) axons, and in these neurons, ARF6 activation is counteracted by an ARF GTPase-activating protein (GAP), which is absent from the CNS, ACAP1. Depleting EFA6 from cortical neurons permits endosomal integrin transport and enhances regeneration, whereas overexpressing EFA6 prevents DRG regeneration. Our results demonstrate that ARF6 is an intrinsic regulator of regenerative capacity, implicating EFA6 as a focal molecule linking the AIS, signalling and transport. This article has an associated First Person interview with the first author of the paper. Highlighted Article: EFA6 is shown to reside in the axon initial segment, where it functions to prevent growth-promoting molecules from entering mature CNS axons. Removing EFA6 elevates the regenerative potential of the axon.


Molecular and Cellular Neuroscience | 2014

Kinesin KIF4A transports integrin β1 in developing axons of cortical neurons

Tristan G. P. Heintz; Janosch P. Heller; Rong-Rong Zhao; Alfredo Cáceres; Richard Eva; James W. Fawcett

CNS axons have poor regenerative ability compared to PNS axons, and mature axons regenerate less well than immature embryonic axons. The loss of regenerative ability with maturity is accompanied by the setting up of a selective transport filter in axons, restricting the types of molecule that are present. We confirm that integrins (represented by subunits β1 and α5) are present in early cortical axons in vitro but are excluded from mature axons. Ribosomal protein and L1 show selective axonal transport through association with kinesin kif4A; we have therefore examined the hypothesis that integrin transport might also be in association with kif4A. Kif4A is present in all processes of immature cortical neurons cultured at E18, then downregulated by 14days in vitro, coinciding with the exclusion of integrin from axons. Kif4a co-localises with β1 integrin in vesicles in neurons and non-neuronal cells, and the two molecules co-immunoprecipitate. Knockdown of KIF4A expression with shRNA reduced the level of integrin β1 in axons of developing neurons and reduced neurite elongation on laminin, an integrin-dependent substrate. Overexpression of kif4A triggered apoptosis in neuronal and non-neuronal cells. In mature neurons expression of kif4A-GFP at a modest level did not kill the cells, and the kif4A was detectable in their axons. However this was not accompanied by an increase in integrin β1 axonal transport, suggesting that kif4A is not the only integrin transporter, and that integrin exclusion from axons is controlled by factors other than the kif4A level.


PLOS ONE | 2012

IP3 3-kinase opposes NGF driven neurite outgrowth

Richard Eva; Dalila Bouyoucef-Cherchalli; Kalpana Patel; Peter J. Cullen; George Banting

The inositol (1,4,5) trisphosphate 3-kinases comprise a family of enzymes (A, B, and C) that phosphorylate the calcium mobilising molecule inositol (1,4,5) trisphosphate (IP3) to generate inositol (1,3,4,5) tetrakisphosphate. This molecule can function as a second messenger, but its roles are not completely understood. The A isoform of inositol (1,4,5) trisphosphate 3-kinase localises to filamentous actin within dendritic spines in the hippocampus and is implicated in the regulation of spine morphology and long term potentiation, however the mechanisms through which it signals in neuronal cells are not completely understood. We have used NGF driven neurite outgrowth from PC12 cells as a platform to examine the impact of signaling via inositol (1,4,5) trisphosphate 3-kinase activity in a neuronal cell. We have found that the catalytic activity of the enzyme opposes neurite outgrowth, whilst pharmacological inhibition of inositol (1,4,5) trisphosphate 3-kinase leads to a significant increase in neurite outgrowth, and we show that the reduction in neurite outgrowth in response to inositol (1,4,5) trisphosphate 3-kinase activity correlates with reduced ERK activity as determined by western blotting using phosphorylation-specific antibodies. Our findings suggest a novel neuronal signaling pathway linking metabolism of IP3 to signaling via ERK.

Collaboration


Dive into the Richard Eva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge