Rie Nakajima-Sasaki
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rie Nakajima-Sasaki.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Philip L. Felgner; Matthew A. Kayala; Adam Vigil; Chad Burk; Rie Nakajima-Sasaki; Jozelyn Pablo; Douglas M. Molina; Siddiqua Hirst; Janet S. W. Chew; Dongling Wang; Gladys Tan; Melanie Duffield; Ron Yang; Julien Neel; Narisara Chantratita; Greg Bancroft; Ganjana Lertmemongkolchai; D. Huw Davies; Pierre Baldi; Sharon J. Peacock; Richard W. Titball
Understanding the way in which the immune system responds to infection is central to the development of vaccines and many diagnostics. To provide insight into this area, we fabricated a protein microarray containing 1,205 Burkholderia pseudomallei proteins, probed it with 88 melioidosis patient sera, and identified 170 reactive antigens. This subset of antigens was printed on a smaller array and probed with a collection of 747 individual sera derived from 10 patient groups including melioidosis patients from Northeast Thailand and Singapore, patients with different infections, healthy individuals from the USA, and from endemic and nonendemic regions of Thailand. We identified 49 antigens that are significantly more reactive in melioidosis patients than healthy people and patients with other types of bacterial infections. We also identified 59 cross-reactive antigens that are equally reactive among all groups, including healthy controls from the USA. Using these results we were able to devise a test that can classify melioidosis positive and negative individuals with sensitivity and specificity of 95% and 83%, respectively, a significant improvement over currently available diagnostic assays. Half of the reactive antigens contained a predicted signal peptide sequence and were classified as outer membrane, surface structures or secreted molecules, and an additional 20% were associated with pathogenicity, adaptation or chaperones. These results show that microarrays allow a more comprehensive analysis of the immune response on an antigen-specific, patient-specific, and population-specific basis, can identify serodiagnostic antigens, and contribute to a more detailed understanding of immunogenicity to this pathogen.
Scientific Reports | 2013
Li Liang; Silvia Juarez; Tran Vu Thieu Nga; Sarah J. Dunstan; Rie Nakajima-Sasaki; D. Huw Davies; Stephen T. McSorley; Stephen Baker; Philip L. Felgner
Current serological diagnostic assays for typhoid fever are based on detecting antibodies against Salmonella LPS or flagellum, resulting in a high false-positive rate. Here we used a protein microarray containing 2,724 Salmonella enterica serovar Typhi antigens (>63% of proteome) and identified antibodies against 16 IgG antigens and 77 IgM antigens that were differentially reactive among acute typhoid patients and healthy controls. The IgG target antigens produced a sensitivity of 97% and specificity of 80%, whereas the IgM target antigens produced 97% and 91% sensitivity and specificity, respectively. Our analyses indicated certain features such as membrane association, secretion, and protein expression were significant enriching features of the reactive antigens. About 72% of the serodiagnostic antigens were within the top 25% of the ranked antigen list using a Naïve bayes classifier. These data provide an important resource for improved diagnostics, therapeutics and vaccine development against an important human pathogen.
Review of Scientific Instruments | 2011
Zahra Noroozi; Horacio Kido; Régis Peytavi; Rie Nakajima-Sasaki; Algimantas Jasinskas; Miodrag Micic; Philip L. Felgner; Marc Madou
A novel, centrifugal disk-based micro-total analysis system (μTAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude.
PLOS ONE | 2013
Mina Kalantari-Dehaghi; Grant J. Anhalt; Michael Camilleri; Alex I. Chernyavsky; Sookhee Chun; Philip L. Felgner; Algis Jasinskas; Kristin M. Leiferman; Li Liang; Steve Marchenko; Rie Nakajima-Sasaki; Mark R. Pittelkow; John J. Zone; Sergei A. Grando
Pemphigus vulgaris (PV) is a mucocutaneous blistering disease characterized by IgG autoantibodies against the stratified squamous epithelium. Current understanding of PV pathophysiology does not explain the mechanism of acantholysis in patients lacking desmoglein antibodies, which justifies a search for novel targets of pemphigus autoimmunity. We tested 264 pemphigus and 138 normal control sera on the multiplexed protein array platform containing 701 human genes encompassing many known keratinocyte cell-surface molecules and members of protein families targeted by organ-non-specific PV antibodies. The top 10 antigens recognized by the majority of test patients’ sera were proteins encoded by the DSC1, DSC3, ATP2C1, PKP3, CHRM3, COL21A1, ANXA8L1, CD88 and CHRNE genes. The most common combinations of target antigens included at least one of the adhesion molecules DSC1, DSC3 or PKP3 and/or the acetylcholine receptor CHRM3 or CHRNE with or without the MHC class II antigen DRA. To identify the PV antibodies most specific to the disease process, we sorted the data based on the ratio of patient to control frequencies of antigen recognition. The frequency of antigen recognition by patients that exceeded that of control by 10 and more times were the molecules encoded by the CD33, GP1BA, CHRND, SLC36A4, CD1B, CD32, CDH8, CDH9, PMP22 and HLA-E genes as well as mitochondrial proteins encoded by the NDUFS1, CYB5B, SOD2, PDHA1 and FH genes. The highest specificity to PV showed combinations of autoantibodies to the calcium pump encoded by ATP2C1 with C5a receptor plus DSC1 or DSC3 or HLA-DRA. The results identified new targets of pemphigus autoimmunity. Novel autoantibody signatures may help explain individual variations in disease severity and treatment response, and serve as sensitive and specific biomarkers for new diagnostic assays in PV patients.
Molecular & Cellular Proteomics | 2011
Adam Vigil; Chen Chen; Aarti Jain; Rie Nakajima-Sasaki; Algimantas Jasinskas; Jozelyn Pablo; Laura R. Hendrix; James E. Samuel; Philip L. Felgner
Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response.
Proteomics | 2010
Adam Vigil; Rocio Ortega; Rie Nakajima-Sasaki; Jozelyn Pablo; Douglas M. Molina; Chien-Chung Chao; Hua-Wei Chen; Wei-Mei Ching; Philip L. Felgner
Comprehensive evaluation of the humoral immune response to Coxiella burnetii may identify highly needed diagnostic antigens and potential subunit vaccine candidates. Here we report the construction of a protein microarray containing 1901 C. burnetii ORFs (84% of the entire proteome). This array was probed with Q‐fever patient sera and naïve controls in order to discover C. burnetii‐specific seroreactive antigens. Among the 21 seroreactive antigens identified, 13 were significantly more reactive in Q‐fever cases than naïve controls. The remaining eight antigens were cross‐reactive in both C. burnetii infected and naïve patient sera. An additional 64 antigens displayed variable seroreactivity in Q‐fever patients, and underscore the diversity of the humoral immune response to C. burnetii. Nine of the differentially reactive antigens were validated on an alternative immunostrip platform, demonstrating proof‐of‐concept development of a consistent, safe, and inexpensive diagnostic assay alternative. Furthermore, we report here the identification of several new diagnostic antigens and potential subunit vaccine candidates for the highly infectious category B alphaproteobacteria, C. burnetii.
Journal of Proteome Research | 2011
Li Liang; Xiaolin Tan; Silvia Juarez; Homarh Villaverde; Jozelyn Pablo; Rie Nakajima-Sasaki; Eduardo Gotuzzo; Mayuko Saito; Gary Hermanson; Douglas M. Molina; Scott Felgner; W.John W Morrow; Xiaowu Liang; Robert H. Gilman; D. Huw Davies; Renée M. Tsolis; Joseph M. Vinetz; Philip L. Felgner
A complete understanding of the factors that determine selection of antigens recognized by the humoral immune response following infectious agent challenge is lacking. Here we illustrate a systems biology approach to identify the antibody signature associated with Brucella melitensis (Bm) infection in humans and predict proteomic features of serodiagnostic antigens. By taking advantage of a full proteome microarray expressing previously cloned 1406 and newly cloned 1640 Bm genes, we were able to identify 122 immunodominant antigens and 33 serodiagnostic antigens. The reactive antigens were then classified according to annotated functional features (COGs), computationally predicted features (e.g., subcellular localization, physical properties), and protein expression estimated by mass spectrometry (MS). Enrichment analyses indicated that membrane association and secretion were significant enriching features of the reactive antigens, as were proteins predicted to have a signal peptide, a single transmembrane domain, and outer membrane or periplasmic location. These features accounted for 67% of the serodiagnostic antigens. An overlay of the seroreactive antigen set with proteomic data sets generated by MS identified an additional 24%, suggesting that protein expression in bacteria is an additional determinant in the induction of Brucella-specific antibodies. This analysis indicates that one-third of the proteome contains enriching features that account for 91% of the antigens recognized, and after B. melitensis infection the immune system develops significant antibody titers against 10% of the proteins with these enriching features. This systems biology approach provides an empirical basis for understanding the breadth and specificity of the immune response to B. melitensis and a new framework for comparing the humoral responses against other microorganisms.
PLOS Neglected Tropical Diseases | 2010
Li Liang; Diana Leng; Chad Burk; Rie Nakajima-Sasaki; Matthew A. Kayala; Vidya L. Atluri; Jozelyn Pablo; Berkay Unal; Thomas A. Ficht; Eduardo Gotuzzo; Mayuko Saito; W. John W. Morrow; Xiaowu Liang; Pierre Baldi; Robert H. Gilman; Joseph M. Vinetz; Renée M. Tsolis; Philip L. Felgner
Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host.
PLOS ONE | 2010
Adam Vigil; Rocio Ortega; Aarti Jain; Rie Nakajima-Sasaki; Xiaolin Tan; Bruno B. Chomel; Rickie W. Kasten; Jane E. Koehler; Philip L. Felgner
Background Bartonella henselae is the zoonotic agent of cat scratch disease and causes potentially fatal infections in immunocompromised patients. Understanding the complex interactions between the hosts immune system and bacterial pathogens is central to the field of infectious diseases and to the development of effective diagnostics and vaccines. Methodology We report the development of a microarray comprised of proteins expressed from 96% (1433/1493) of the predicted ORFs encoded by the genome of the zoonotic pathogen Bartonella henselae. The array was probed with a collection of 62 uninfected, 62 infected, and 8 “specific-pathogen free” naïve cat sera, to profile the antibody repertoire elicited during natural Bartonella henselae infection. Conclusions We found that 7.3% of the B. henselae proteins on the microarray were seroreactive and that seroreactivity was not evenly distributed between predicted protein function or subcellular localization. Membrane proteins were significantly most likely to be seroreactive, although only 23% of the membrane proteins were reactive. Conversely, we found that proteins involved in amino acid transport and metabolism were significantly underrepresented and did not contain any seroreactive antigens. Of all seroreactive antigens, 52 were differentially reactive with sera from infected cats, and 53 were equally reactive with sera from infected and uninfected cats. Thirteen of the seroreactive antigens were found to be differentially seroreactive between B. henselae type I and type II. Based on these results, we developed a classifier algorithm that was capable of accurately discerning 93% of the infected animals using the microarray platform. The seroreactivity and diagnostic potential of these antigens was then validated on an immunostrip platform, which correctly identified 98% of the infected cats. Our protein microarray platform provides a high-throughput, comprehensive analysis of the feline humoral immune response to natural infection with the alpha-proteobacterium B. henselae at an antigen-specific, sera-specific, and genome-wide level. Furthermore, these results provide novel insight and utility in diagnostics, vaccine development, and understanding of host-pathogen interaction.
Journal of Virology | 2012
Mina Kalantari-Dehaghi; Sookhee Chun; Aziz Alami Chentoufi; Jozelyn Pablo; Li Liang; Gargi Dasgupta; Douglas M. Molina; Algis Jasinskas; Rie Nakajima-Sasaki; Jiin Felgner; Gary Hermanson; Lbachir BenMohamed; Philip L. Felgner; D. Huw Davies
ABSTRACT Routine serodiagnosis of herpes simplex virus (HSV) infections is currently performed using recombinant glycoprotein G (gG) antigens from herpes simplex virus 1 (HSV-1) and HSV-2. This is a single-antigen test and has only one diagnostic application. Relatively little is known about HSV antigenicity at the proteome-wide level, and the full potential of mining the antibody repertoire to identify antigens with other useful diagnostic properties and candidate vaccine antigens is yet to be realized. To this end we produced HSV-1 and -2 proteome microarrays in Escherichia coli and probed them against a panel of sera from patients serotyped using commercial gG-1 and gG-2 (gGs for HSV-1 and -2, respectively) enzyme-linked immunosorbent assays. We identified many reactive antigens in both HSV-1 and -2, some of which were type specific (i.e., recognized by HSV-1- or HSV-2-positive donors only) and others of which were nonspecific or cross-reactive (i.e., recognized by both HSV-1- and HSV-2-positive donors). Both membrane and nonmembrane virion proteins were antigenic, although type-specific antigens were enriched for membrane proteins, despite being expressed in E. coli.