Rikke Frøhlich
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rikke Frøhlich.
Nucleic Acids Research | 2008
Felicie F. Andersen; Bjarne Knudsen; Cristiano L. P. Oliveira; Rikke Frøhlich; Dinna Krüger; Jörg Bungert; Mavis Agbandje-McKenna; Robert McKenna; Sissel Juul; Christopher Veigaard; Jørn Koch; John L. Rubinstein; Bernt Guldbrandtsen; Marianne Smedegaard Hede; Göran Karlsson; Anni H. Andersen; Jan Skov Pedersen; Birgitta R. Knudsen
The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures.
ACS Nano | 2012
Sissel Juul; Christine J. F. Nielsen; Rodrigo Labouriau; Amit Roy; Cinzia Tesauro; Pia W. Jensen; Charlotte Harmsen; Emil L. Kristoffersen; Ya-Ling Chiu; Rikke Frøhlich; Paola Fiorani; Janet Cox-Singh; David Tordrup; Jørn Koch; Anne-Lise Bienvenu; Alessandro Desideri; Stéphane Picot; Eskild Petersen; Kam W. Leong; Yi-Ping Ho; Magnus Stougaard; Birgitta R. Knudsen
We present an attractive new system for the specific and sensitive detection of the malaria-causing Plasmodium parasites. The system relies on isothermal conversion of single DNA cleavage-ligation events catalyzed specifically by the Plasmodium enzyme topoisomerase I to micrometer-sized products detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite/μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate detection of even a few parasites is becoming increasingly important for the continued combat against the disease. We believe that the presented droplet microfluidics platform, which has a high potential for adaptation to point-of-care setups suitable for low-resource settings, may contribute significantly to meet this demand. Moreover, potential future adaptation of the presented setup for the detection of other microorganisms may form the basis for the development of a more generic platform for diagnosis, fresh water or food quality control, or other purposes within applied or basic science.
ACS Nano | 2013
Sissel Juul; Federico Iacovelli; Mattia Falconi; Sofie Louise Kragh; Brian Christensen; Rikke Frøhlich; Oskar Franch; Emil L. Kristoffersen; Magnus Stougaard; Kam W. Leong; Yi-Ping Ho; Esben S. Sørensen; Victoria Birkedal; Alessandro Desideri; Birgitta R. Knudsen
We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12 double-stranded B-DNA helices that constituted the edges of the structure. The double stranded helices were interrupted by short single-stranded thymidine linkers constituting the cage corners except for one, which was composed by four 32 nucleotide long stretches of DNA with a sequence that allowed them to fold into hairpin structures. As demonstrated by gel-electrophoretic and fluorophore-quenching experiments this design imposed a temperature-controlled conformational transition capability to the structure, which allowed entrance or release of an enzyme cargo at 37 °C while ensuring retainment of the cargo in the central cavity of the cage at 4 °C. The entrapped enzyme was catalytically active inside the DNA cage and was able to convert substrate molecules penetrating the apertures in the DNA lattice that surrounded the central cavity of the cage.
Journal of Cell Science | 2011
Birija S. Patro; Rikke Frøhlich; Vilhelm A. Bohr; Tinna Stevnsner
Checkpoints are cellular surveillance and signaling pathways that coordinate the response to DNA damage and replicative stress. Consequently, failure of cellular checkpoints increases susceptibility to DNA damage and can lead to profound genome instability. This study examines the role of a human RECQ helicase, WRN, in checkpoint activation in response to DNA damage. Mutations in WRN lead to genomic instability and the premature aging condition Werner syndrome. Here, the role of WRN in a DNA-damage-induced checkpoint was analyzed in U-2 OS (WRN wild type) and isogenic cells stably expressing WRN-targeted shRNA (WRN knockdown). The results of our studies suggest that WRN has a crucial role in inducing an S-phase checkpoint in cells exposed to the topoisomerase I inhibitor campthothecin (CPT), but not in cells exposed to hydroxyurea. Intriguingly, WRN decreases the rate of replication fork elongation, increases the accumulation of ssDNA and stimulates phosphorylation of CHK1, which releases CHK1 from chromatin in CPT-treated cells. Importantly, knockdown of WRN expression abolished or delayed all these processes in response to CPT. Together, our results strongly suggest an essential regulatory role for WRN in controlling the ATR–CHK1-mediated S-phase checkpoint in CPT-treated cells.
Nucleic Acids Research | 2007
Rikke Frøhlich; Christopher Veigaard; Felicie F. Andersen; A. Kathleen McClendon; Amanda C. Gentry; Andersen Ah; Neil Osheroff; Tinna Stevnsner; Birgitta Ruth Knudsen
Positive supercoils are introduced in cellular DNA in front of and negative supercoils behind tracking polymerases. Since DNA purified from cells is normally under-wound, most studies addressing the relaxation activity of topoisomerase I have utilized negatively supercoiled plasmids. The present report compares the relaxation activity of human topoisomerase I variants on plasmids containing equal numbers of superhelical twists with opposite handedness. We demonstrate that the wild-type enzyme and mutants lacking amino acids 1–206 or 191–206, or having tryptophane-205 replaced with a glycine relax positive supercoils faster than negative supercoils under both processive and distributive conditions. In contrast to wild-type topoisomerase I, which exhibited camptothecin sensitivity during relaxation of both negative and positive supercoils, the investigated N-terminally mutated variants were sensitive to camptothecin only during removal of positive supercoils. These data suggest different mechanisms of action during removal of supercoils of opposite handedness and are consistent with a recently published simulation study [Sari and Andricioaei (2005) Nucleic Acids Res., 33, 6621–6634] suggesting flexibility in distinct parts of the enzyme during clockwise or counterclockwise strand rotation.
Sensors | 2014
Joanna Proszek; Amit Roy; Ann-Katrine Jakobsen; Rikke Frøhlich; Birgitta R. Knudsen; Magnus Stougaard
Human topoisomerase I (hTopI) is an essential cellular enzyme. The enzyme is often upregulated in cancer cells, and it is a target for chemotherapeutic drugs of the camptothecin (CPT) family. Response to CPT-based treatment is dependent on hTopI activity, and reduction in activity, and mutations in hTopI have been reported to result in CPT resistance. Therefore, hTOPI gene copy number, mRNA level, protein amount, and enzyme activity have been studied to explain differences in cellular response to CPT. We show that Rolling Circle Enhanced Enzyme Activity Detection (REEAD), allowing measurement of hTopI cleavage-religation activity at the single molecule level, may be used to detect posttranslational enzymatic differences influencing CPT response. These differences cannot be detected by analysis of hTopI gene copy number, mRNA amount, or protein amount, and only become apparent upon measuring the activity of hTopI in the presence of CPT. Furthermore, we detected differences in the activity of the repair enzyme tyrosyl-DNA phosphodiesterase 1, which is involved in repair of hTopI-induced DNA damage. Since increased TDP1 activity can reduce cellular CPT sensitivity we suggest that a combined measurement of TDP1 activity and hTopI activity in presence of CPT will be the best determinant for CPT response.
PLOS ONE | 2014
Amit Roy; Cinzia Tesauro; Rikke Frøhlich; Marianne Smedegaard Hede; Maria Juul Nielsen; Eigil Kjeldsen; Bjarne J. Bonven; Magnus Stougaard; Irina Gromova; Birgitta R. Knudsen
The CD44+ and CD44− subpopulations of the colorectal cancer cell line Caco2 were analyzed separately for their sensitivities to the antitumor drug camptothecin. CD44+ cells were less sensitive to camptothecin than CD44− cells. The relative resistance of CD44+ cells was correlated with (i) reduced activity of the nuclear enzyme topoisomerase I and (ii) insensitivity of this enzyme to camptothecin when analyzed in extracts. In contrast, topoisomerase I activity was higher in extracts from CD44− cells and the enzyme was camptothecin sensitive. Topoisomerase I from the two subpopulations were differentially phosphorylated in a manner that appeared to determine the drug sensitivity and activity of the enzyme. This finding was further supported by the fact that phosphorylation of topoisomerase I in CD44+ cell extract by protein kinase CK2 converted the enzyme to a camptothecin sensitive, more active form mimicking topoisomerase I in extracts from CD44− cells. Conversely, dephosphorylation of topoisomerase I in extracts from CD44− cells rendered the enzyme less active and camptothecin resistant. These findings add to our understanding of chemotherapy resistance in the Caco2 CD44+ cancer stem cell model.
international conference of the ieee engineering in medicine and biology society | 2012
Cinzia Tesauro; Sissel Juul; Barbara Arno; Christine J. F. Nielsen; Paola Fiorani; Rikke Frøhlich; Felicie F. Andersen; Alessandro Desideri; Magnus Stougaard; Eskild Petersen; Birgitta R. Knudsen
We present a Rolling-Circle-Enhance-Enzyme-Activity-Detection (REEAD) system with potential use for future point-of-care diagnosis of malaria. In the developed setup, specific detection of malaria parasites in crude blood samples is facilitated by the conversion of single Plasmodium falciparum topoisomerase I (pfTopI) mediated cleavage-ligation events, happening within nanometer dimensions, to micrometer-sized products readily detectable at the single molecule level in a fluorescence microscope. In principle, REEAD requires no special equipment and the readout is adaptable to simple colorimetric detection systems. Moreover, with regard to detection limit the presented setup is likely to outcompete standard gold immuno-based diagnostics. Hence, we believe the presented assay forms the basis for a new generation of easy-to-use diagnostic tools suitable for the malaria epidemic areas in developing countries.
Biochemistry | 2008
Rikke Frøhlich; Sissel Juul; Maria Bjerre Nielsen; Maria Vinther; Christopher Veigaard; Marianne Smedegaard Hede; Felicie F. Andersen
Cellular forms of type IB topoisomerases distinguish themselves from their viral counterparts and the tyrosine recombinases to which they are closely related by having rather extensive N-terminal and linker domains. The functions and necessity of these domains are not yet fully unraveled. In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals that six amino acids from the Cre linker loop constitute the minimal length of a functional linker in human topoisomerase I.
Methods of Molecular Biology | 2015
Cinzia Tesauro; Rikke Frøhlich; Magnus Stougaard; Yi-Ping Ho; Birgitta R. Knudsen
Cellular heterogeneity has presented a significant challenge in the studies of biology. While most of our understanding is based on the analysis of ensemble average, individual cells may process information and respond to perturbations very differently. Presented here is a highly sensitive platform capable of measuring enzymatic activity at the single-cell level. The strategy innovatively combines a rolling circle-enhanced enzyme activity detection (REEAD) assay with droplet microfluidics. The single-molecule sensitivity of REEAD allows highly sensitive detection of enzymatic activities, i.e. at the single catalytic event level, whereas the microfluidics enables isolation of single cells. Further, confined reactions in picoliter-sized droplets significantly improve enzyme extraction from human cells or microorganisms and result in faster reaction kinetics. Taken together, the described protocol is expected to open up new possibilities in the single-cell research, particularly for the elucidation of heterogeneity in a population of cells.