Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita A. Paolini is active.

Publication


Featured researches published by Rita A. Paolini.


Biochemical Journal | 2002

Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50

Paul D. Veith; Gert H. Talbo; Nada Slakeski; Stuart G. Dashper; Caroline Moore; Rita A. Paolini; Eric C. Reynolds

Porphyromonas gingivalis is an anaerobic, asaccharolytic Gram-negative rod associated with chronic periodontitis. We have undertaken a proteomic study of the outer membrane of P. gingivalis strain W50 using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteins were identified by reference to the pre-release genomic sequence of P. gingivalis available from The Institute for Genomic Research. Out of 39 proteins identified, five were TonB-linked outer membrane receptors, ten others were putative integral outer membrane proteins and four were putative lipoproteins. Pyroglutamate was found to be the N-terminal residue of seven of the proteins, and was predicted to be the N-terminal residue of 13 additional proteins. The RgpA, Kgp and HagA polyproteins were identified as fully processed domains in outer membranes prepared in the presence of proteinase inhibitors. Several domains were found to be C-terminally truncated 16-57 residues upstream from the N-terminus of the following domain, at a residue penultimate to a lysine. This pattern of C-terminal processing was not detected in a W50 strain isogenic mutant lacking the lysine-specific proteinase Kgp. Construction of another W50 isogenic mutant lacking the arginine-specific proteinases indicated that RgpB and/or RgpA were also involved in domain processing. The C-terminal adhesin of RgpA, designated RgpA27, together with RgpB and two newly identified proteins designated P27 and P59 were found to migrate on two-dimensional gels as vertical streaks at a molecular mass 13-42 kDa higher than that calculated from their gene sequences. The electrophoretic behaviour of these proteins, together with their immunoreactivity with a monoclonal antibody that recognizes lipopolysaccharide, is consistent with a modification that could anchor the proteins to the outer membrane.


Infection and Immunity | 2001

Role of RgpA, RgpB, and Kgp Proteinases in Virulence of Porphyromonas gingivalis W50 in a Murine Lesion Model

Neil M. O'Brien-Simpson; Rita A. Paolini; Brigitte Hoffmann; Nada Slakeski; Stuart G. Dashper; Eric C. Reynolds

ABSTRACT Extracellular Arg-x- and Lys-x-specific cysteine proteinases are considered important virulence factors and pathogenic markers forPorphyromonas gingivalis, a bacterium implicated as a major etiological agent of chronic periodontitis. Three genes.rgpA, rgpB, and kgp,encode an Arg-x-specific proteinase and adhesins (RgpA), an Arg-x-specific proteinase (RgpB), and a Lys-x-specific proteinase and adhesins (Kgp), respectively. The contribution to pathogenicity of each of the proteinase genes of P. gingivalis W50 was investigated in a murine lesion model using isogenic mutants lacking RgpA, RgpB, and Kgp. Whole-cell Arg-x-specific proteolytic activity of both the RgpA− and RgpB− isogenic mutants was significantly reduced (3- to 4-fold) relative to that of the wild-type W50. However, for the Kgp− isogenic mutant, whole-cell Arg-x activity was similar to that of the wild-type strain. Whole-cell Lys-x proteolytic activity of the RgpA− and RgpB− mutants was not significantly different from that of wild-type W50, whereas the Kgp− mutant was devoid of Lys-x whole-cell proteolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis using proteinase-specific antibodies of cell sonicates of the wild-type and mutant strains showed that the proteinase catalytic domain of each of the mutants was not expressed. This analysis further showed that RgpB appeared as 72- and 80-kDa bands, and the catalytic domains of RgpA and Kgp appeared as processed 45-kDa and 48-kDa bands, respectively. In the murine lesion model, mice were challenged with three doses of each mutant and wild-type strain. At the lower dose (3.0 × 109 viable-cells), no lesions were recorded for each of the mutants, whereas wild-type W50 induced large ulcerative lesions. At a dose of 6.0 × 109 viable-cells, all the mice challenged with the wild-type strain died, whereas mice challenged with the RgpA− and RgpB− isogenic mutants did not die but developed lesions. Mice challenged with the Kgp−isogenic mutant at this dose did not develop lesions. At a 1.2 × 1010 viable-cell dose, only 40% of mice challenged with the Kgp− mutant developed lesions, and these lesions were significantly smaller than lesions induced by the wild-type strain at the 3.0 × 109 viable-cell dose. All the mice challenged with the RgpA− mutant died at the 1.2 × 1010 viable-cell dose, whereas only 20% died when challenged with the RgpB− mutant at this dose. Wild-type phenotype was restored to the RgpB− mutant by complementation with plasmid pNJR12::rgpBcontaining the rgpB gene. There was no difference between the pNJR12::rgpB-complemented RgpB− mutant and the wild-type W50 strain in whole-cell Arg-x activity, protein profile, or virulence in the murine lesion model. These results show that the three proteinases, RgpA, RgpB, and Kgp, all contributed to virulence of P. gingivalis W50 in the murine lesion model and that the order in which they contributed was Kgp ≫ RgpB ≥ RgpA.


Journal of Biological Chemistry | 2005

A Novel Porphyromonas gingivalis FeoB Plays a Role in Manganese Accumulation

Stuart G. Dashper; Catherine A. Butler; J. Patricia Lissel; Rita A. Paolini; Brigitte Hoffmann; Paul D. Veith; Neil M. O'Brien-Simpson; Sarah L. Snelgrove; John T. Tsiros; Eric C. Reynolds

FeoB is an atypical transporter that has been shown to exclusively mediate ferrous ion transport in some bacteria. Unusually the genome of the periodontal pathogen Porphyromonas gingivalis has two genes (feoB1 and feoB2) encoding FeoB homologs, both of which are expressed in bicistronic operons. Kinetic analysis of ferrous ion transport by P. gingivalis W50 revealed the presence of a single, high affinity system with a Kt of 0.31 μm. FeoB1 was found to be solely responsible for this transport as energized cells of the isogenic FeoB1 mutant (W50FB1) did not transport radiolabeled iron, while the isogenic FeoB2 mutant (W50FB2) transported radiolabeled iron at a rate similar to wild type. This was reflected in the iron content of W50FB1 grown in iron excess conditions which was approximately half that of the wild type and W50FB2. The W50FB1 mutant had increased sensitivity to both oxygen and hydrogen peroxide and was avirulent in an animal model of infection whereas W50FB2 exhibited the same virulence as the wild type. Analysis of manganous ion uptake using inductively coupled plasma-mass spectrometry revealed a greater than 3-fold decrease in intracellular manganese accumulation in W50FB2 which was also unable to grow in manganese-limited media. The protein co-expressed with FeoB2 appears to be a novel FeoA-MntR fusion protein that exhibits homology to a manganese-responsive, DNA-binding metalloregulatory protein. These results indicate that FeoB2 is not involved in iron transport but plays a novel role in manganese transport.


Infection and Immunity | 2000

RgpA-Kgp peptide-based immunogens provide protection against Porphyromonas gingivalis challenge in a murine lesion model.

Neil M. O'Brien-Simpson; Rita A. Paolini; Eric C. Reynolds

ABSTRACT Porphyromonas gingivalis, a gram-negative bacterium, has been linked to the onset and progression of periodontitis, a chronic inflammatory disease of the supporting tissues of the teeth. A major virulence factor ofP. gingivalis is an extracellular complex of Arg- and Lys-specific proteinases and adhesins designated the RgpA-Kgp complex (formerly the PrtR-PrtK complex). In this study we show that the RgpA-Kgp complex, when used as an immunogen with incomplete Freund adjuvant (IFA), protects against challenge with invasive and noninvasive strains of P. gingivalis in the murine lesion model. We identified a variety of peptide vaccine candidates from the RgpA and Kgp polyprotein sequences that involved the putative active site histidine of both proteinases and five repeat motifs in the adhesin domains of both polyproteins implicated in aggregation and binding to host substrates, designated adhesin-binding motif (ABM) peptides. These peptides were synthesized using standard, solid-phase protocols for 9-fluorenylmethoxy carbonyl chemistry withS-acetylmercaptoacetic acid (SAMA) as the N-terminal residue. The SAMA-peptides were then conjugated to diphtheria toxoid and used with IFA to immunize BALB/c mice. Both active-site peptides and three of the five ABM peptides gave protection (P< 0.005) against challenge with P. gingivalis in the murine lesion model. The three ABM peptide sequences that conferred protection exist within a 100-residue span in the RgpA44 and Kgp39 adhesins of the RgpA-Kgp complex. Protective anti-RgpA-Kgp complex mouse antisera recognized the RgpA27, Kgp39, and RgpA44 adhesins in an immunoblot. Epitope mapping of the RgpA27 adhesin using the protective anti-RgpA-Kgp antisera identified a major protective epitope that mapped immediately N terminal to one of the protective ABM peptides in the 100-residue span in RgpA44 and Kgp39. This identified protective epitope contains clusters of basic residues spatially surrounded by hydrophobic amino acids, a finding which is characteristic of a heparin binding motif.


Antimicrobial Agents and Chemotherapy | 2005

Divalent Metal Cations Increase the Activity of the Antimicrobial Peptide Kappacin

Stuart G. Dashper; Neil M. O'Brien-Simpson; Keith J. Cross; Rita A. Paolini; Brigitte Hoffmann; Deanne V. Catmull; Marina Malkoski; Eric C. Reynolds

ABSTRACT Kappacin, nonglycosylated κ-casein(106-169), is a novel antimicrobial peptide produced from κ-casein found in bovine milk. There are two major genetic forms of kappacin, A and B, and using synthetic peptides corresponding to the active region, κ-casein(138-158), of these forms, we have shown that the Asp148 to Ala148 substitution is responsible for the lesser antibacterial activity of κ-casein-B(106-169). Kappacin was shown to have membranolytic action at concentrations above 30 μM at acidic pH when tested against artificial liposomes. There was little membranolytic activity at neutral pH, which is consistent with the lack of antibacterial activity of kappacin against Streptococcus mutans at this pH. Kappacin specifically bound two zinc or calcium ions per mol, and this binding enhanced antibacterial activity at neutral pH. Nuclear magnetic resonance analysis indicated that a κ-casein-A(138-158) synthetic peptide undergoes a conformational change in the presence of the membrane solvent trifluoroethanol and excess divalent metal ions. This change in conformation is presumably responsible for the increase in antibacterial activity of kappacin detected in the presence of excess zinc or calcium ions at neutral pH. When tested against the oral bacterial pathogen S. mutans cultured as a biofilm in a constant-depth film fermentor, a preparation of 10 g/liter kappacin and 20 mM ZnCl2 reduced bacterial viability by 3 log10 and suppressed recovery of viability. In contrast 20 mM ZnCl2 alone reduced bacterial viability by ≈1 log10 followed by rapid recovery. In conclusion, kappacin has a membranolytic, antibacterial effect that is enhanced by the presence of divalent cations.


Journal of Biological Chemistry | 2002

CPG70 is a novel basic metallocarboxypeptidase with C-terminal polycystic kidney disease domains from Porphyromonas gingivalis

Yu-Yen Chen; Keith J. Cross; Rita A. Paolini; James E Fielding; Nada Slakeski; Eric C. Reynolds

In a search for a basic carboxypeptidase that might work in concert with the major virulence factors, the Arg- and Lys-specific cysteine endoproteinases of Porphyromonas gingivalis, a novel 69.8-kDa metallocarboxypeptidase CPG70 was purified to apparent homogeneity from the culture fluid of P. gingivalis HG66. Carboxypeptidase activity was measured by matrix-assisted laser desorption ionization-mass spectrometry using peptide substrates derived from a tryptic digest of hemoglobin. CPG70 exhibited activity with peptides containing C-terminal Lys and Arg residues. The k cat/K m values for the hydrolysis of the synthetic dipeptides FA-Ala-Lys and FA-Ala-Arg by CPG70 were 99 and 56 mm −1s−1, respectively. The enzyme activity was strongly inhibited by the Arg analog (2-guanidinoethylmercapto)succinic acid and 1,10-phenanthroline. High resolution inductively coupled plasma-mass spectrometry demonstrated that 1 mol of CPG70 was associated with 0.6 mol of zinc, 0.2 mol of nickel, and 0.2 mol of copper. A search of the P. gingivalis W83 genomic data base (TIGR) with the N-terminal amino acid sequence determined for CPG70 revealed that the enzyme is an N- and C-terminally truncated form of a predicted 91.5-kDa protein (PG0232). Analysis of the deduced amino acid sequence of the full-length protein revealed an N-terminal signal sequence followed by a pro-segment, a metallocarboxypeptidase catalytic domain, three tandem polycystic kidney disease domains, and an 88-residue C-terminal segment. The catalytic domain exhibited the highest sequence identity with the duck metallocarboxypeptidase D domain II. Insertional inactivation of the gene encoding CPG70 resulted in a P. gingivalis isogenic mutant that was avirulent in the murine lesion model under the conditions tested.


Microbiology | 2010

Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases

Helen L. Mitchell; Stuart G. Dashper; Deanne V. Catmull; Rita A. Paolini; Steven M. Cleal; Nada Slakeski; Kheng H. Tan; Eric C. Reynolds

Treponema denticola is an oral spirochaete that has been strongly associated with chronic periodontitis. The bacterium exists as part of a dense biofilm (subgingival dental plaque) accreted to the tooth. To determine T. denticola gene products important for persistence as a biofilm we developed a continuous-culture biofilm model and conducted a genome-wide transcriptomic analysis of biofilm and planktonic cells. A total of 126 genes were differentially expressed with a fold change of 1.5 or greater. This analysis identified the upregulation of putative prophage genes in the T. denticola 35405 genome. Intact bacteriophage particles were isolated from T. denticola and circular phage DNA was detected by PCR analysis. This represents the first, to our knowledge, functional bacteriophage isolated from T. denticola, which we have designated varphitd1. In biofilm cells there was also an upregulation of genes encoding several virulence factors, toxin-antitoxin systems and a family of putative transposases. Together, these data indicate that there is a higher potential for genetic mobility in T. denticola when growing as a biofilm and that these systems are important for the biofilm persistence and therefore virulence of this bacterium.


Biochimica et Biophysica Acta | 2009

Major proteins and antigens of Treponema denticola

Paul D. Veith; Stuart G. Dashper; Neil M. O'Brien-Simpson; Rita A. Paolini; Rebecca Orth; Katrina A. Walsh; Eric C. Reynolds

Treponema denticola is a Gram-negative, motile, asaccharolytic, anaerobic spirochaete which along with Porphyromonas gingivalis and Tannerella forsythia has been shown to form a bacterial consortium called the Red Complex that is strongly associated with the clinical progression of chronic periodontitis. T. denticola was grown in continuous culture in a complex medium with a mean generation time of 15.75 h. Samples from two different membrane-enriched preparations and a cytoplasm-enriched preparation were separated by two-dimensional gel electrophoresis and the proteins identified by MALDI-TOF/TOF mass spectrometry. In total, 219 non-redundant proteins were identified including numerous virulence factors, lipoproteins, ABC transporter proteins and enzymes involved in the metabolism of nine different amino acids of which glycine seems to be of particular importance. Novel findings include the identification of several abundant peptide uptake systems, and the identification of three flagellar filament outer layer proteins. Two-dimensional Western blot analysis using sera from mice immunized with formalin-killed T. denticola cells suggested that Msp, PrcA, OppA, OppA10, MglB, TmpC and several flagellar filament proteins are antigenic.


Antimicrobial Agents and Chemotherapy | 2011

Porphyromonas gingivalis Cysteine Proteinase Inhibition by κ-Casein Peptides

Elena C. Y. Toh; Stuart G. Dashper; N. Laila Huq; Troy J. Attard; Neil M. O'Brien-Simpson; Yu-Yen Chen; Keith J. Cross; David P. Stanton; Rita A. Paolini; Eric C. Reynolds

ABSTRACT Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. The Arg-specific (RgpA/B) and Lys-specific (Kgp) cysteine proteinases of P. gingivalis are major virulence factors for the bacterium. In this study κ-casein(109-137) was identified in a chymosin digest of casein as an inhibiting peptide of the P. gingivalis proteinases. The peptide was synthesized and shown to inhibit proteolytic activity associated with P. gingivalis whole cells, purified RgpA-Kgp proteinase-adhesin complexes, and purified RgpB proteinase. The peptide κ-casein(109-137) exhibited synergism with Zn(II) against both Arg- and Lys-specific proteinases. The active region for inhibition was identified as κ-casein(117-137) using synthetic peptides. Kinetic studies revealed that κ-casein(109-137) inhibits in an uncompetitive manner. A molecular model based on the uncompetitive action and its synergistic ability with Zn(II) was developed to explain the mechanism of inhibition. Preincubation of P. gingivalis with κ-casein(109-137) significantly reduced lesion development in a murine model of infection.


Antimicrobial Agents and Chemotherapy | 2010

Inhibition of Porphyromonas gingivalis Biofilm by Oxantel

Stuart G. Dashper; Ching-Seng Ang; Sze Wei Liu; Rita A. Paolini; Paul D. Veith; Eric C. Reynolds

ABSTRACT Porphyromonas gingivalis is a major pathogen of chronic periodontitis and exists in a biofilm on the surface of the tooth root. Oxantel, a cholinergic anthelmintic and fumarate reductase inhibitor, significantly inhibited biofilm formation by P. gingivalis and disrupted established biofilms at concentrations below its MIC against planktonic cells. Oxantel was more effective against P. gingivalis in biofilm than metronidazole, a commonly used antibiotic for periodontitis.

Collaboration


Dive into the Rita A. Paolini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Yen Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge