Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Masellis is active.

Publication


Featured researches published by Rita Masellis.


The Journal of Neuroscience | 2009

Functional Variation of the Dopamine D2 Receptor Gene Is Associated with Emotional Control as well as Brain Activity and Connectivity during Emotion Processing in Humans

Giuseppe Blasi; Luciana Lo Bianco; Paolo Taurisano; Barbara Gelao; Raffaella Romano; Leonardo Fazio; Apostolos Papazacharias; Annabella Di Giorgio; Grazia Caforio; Antonio Rampino; Rita Masellis; Audrey C. Papp; Gianluca Ursini; Lorenzo Sinibaldi; Teresa Popolizio; Wolfgang Sadee; Alessandro Bertolino

Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2) (rs1076560, guanine > thymine or G > T) shifts splicing of the two protein isoforms (D2 short, mainly presynaptic, and D2 long) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced “emotion control” compared with GT subjects. Functional magnetic resonance imaging in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.


American Journal of Psychiatry | 2013

Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia

Giuseppe Blasi; Francesco Napolitano; Gianluca Ursini; Annabella Di Giorgio; Grazia Caforio; Paolo Taurisano; Leonardo Fazio; Barbara Gelao; Maria Teresa Attrotto; Lucia Colagiorgio; Giovanna Todarello; Francesco Piva; Apostolos Papazacharias; Rita Masellis; Marina Mancini; Annamaria Porcelli; Raffaella Romano; Antonio Rampino; Tiziana Quarto; Matteo Giulietti; Barbara K. Lipska; Joel E. Kleinman; Teresa Popolizio; Daniel R. Weinberger; Alessandro Usiello; Alessandro Bertolino

OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.


JAMA Psychiatry | 2013

Converging evidence for the association of functional genetic variation in the serotonin receptor 2a gene with prefrontal function and olanzapine treatment.

Giuseppe Blasi; Caterina De Virgilio; Apostolos Papazacharias; Paolo Taurisano; Barbara Gelao; Leonardo Fazio; Gianluca Ursini; Lorenzo Sinibaldi; Ileana Andriola; Rita Masellis; Raffaella Romano; Antonio Rampino; Annabella Di Giorgio; Luciana Lo Bianco; Grazia Caforio; Francesco Piva; Teresa Popolizio; Cesario Bellantuono; Orlando Todarello; Joel E. Kleinman; Gemma Gadaleta; Daniel R. Weinberger; Alessandro Bertolino

IMPORTANCE Serotonin (5-hydroxytryptamine) receptor 2a (5-HT2AR) signaling is important for modulation of corticostriatal pathways and prefrontal activity during cognition. Furthermore, newer antipsychotic drugs target 5-HT2AR. A single-nucleotide polymorphism in the 5-HT2AR gene (HTR2A rs6314, C>T; OMIM 182135) has been weakly associated with differential 5-HT2AR signaling and with physiologic as well as behavioral effects. OBJECTIVE To use a hierarchical approach to determine the functional effects of this single-nucleotide polymorphism on 5-HT2AR messenger RNA and protein expression, on prefrontal phenotypes linked with genetic risk for schizophrenia, and on treatment with olanzapine. DESIGN In silico predictions, in vitro, and case-control investigations. SETTING Academic and clinical facilities. PARTICIPANTS The postmortem study included 112 brains from healthy individuals; the in vivo investigation included a total sample of 371 healthy individuals and patients with schizophrenia. EXPOSURES Patients received olanzapine monotherapy for 8 weeks. MAIN OUTCOMES AND MEASURES In silico predictions, messenger RNA, and protein expression in postmortem human prefrontal cortex and HeLa cells, functional magnetic resonance imaging prefrontal activity and behavior during working memory and attention in healthy individuals, and response to an 8-week trial of olanzapine treatment in patients with schizophrenia. RESULTS Bioinformatic analysis predicted that rs6314 alters patterns of splicing, with possible effects on HTR2A expression. Moreover, the T allele was associated with reduced prefrontal messenger RNA expression in postmortem prefrontal cortex, with reduced protein expression in vitro, inefficient prefrontal blood oxygen level-dependent functional magnetic resonance imaging response during working memory and attentional control processing, and impaired working memory and attention behavior, as well as with attenuated improvement in negative symptoms after olanzapine treatment. CONCLUSIONS AND RELEVANCE Our results suggest that HTR2A rs6314 affects 5-HT2AR expression and functionally contributes to genetic modulation of known endophenotypes of schizophrenia-like higher-level cognitive behaviors and related prefrontal activity, as well as response to treatment with olanzapine.


Neuropsychopharmacology | 2015

Functional genetic variation of the cannabinoid receptor 1 and cannabis use interact on prefrontal connectivity and related working memory behavior

Marco Colizzi; Leonardo Fazio; Laura Ferranti; Annamaria Porcelli; Rita Masellis; Daniela Marvulli; Aurora Bonvino; Gianluca Ursini; Giuseppe Blasi; Alessandro Bertolino

Cannabinoid signaling is involved in different brain functions and it is mediated by the cannabinoid receptor 1 (CNR1), which is encoded by the CNR1 gene. Previous evidence suggests an association between cognition and cannabis use. The logical interaction between genetically determined cannabinoid signaling and cannabis use has not been determined. Therefore, we investigated whether CNR1 variation predicts CNR1 prefrontal mRNA expression in postmortem prefrontal human tissue. Then, we studied whether functional variation in CNR1 and cannabis exposure interact in modulating prefrontal function and related behavior during working memory processing. Thus, 208 healthy subjects (113 males) were genotyped for the relevant functional SNP and were evaluated for cannabis use by the Cannabis Experience Questionnaire. All individuals performed the 2-back working memory task during functional magnetic resonance imaging. CNR1 rs1406977 was associated with prefrontal mRNA and individuals carrying a G allele had reduced CNR1 prefrontal mRNA levels compared with AA subjects. Moreover, functional connectivity MRI demonstrated that G carriers who were also cannabis users had greater functional connectivity in the left ventrolateral prefrontal cortex and reduced working memory behavioral accuracy during the 2-back task compared with the other groups. Overall, our results indicate that the deleterious effects of cannabis use are more evident on a specific genetic background related to its receptor expression.


Neuropsychopharmacology | 2015

Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

Giuseppe Blasi; Pierluigi Selvaggi; Leonardo Fazio; Linda A. Antonucci; Paolo Taurisano; Rita Masellis; Raffaella Romano; Marina Mancini; Fengyu Zhang; Grazia Caforio; Teresa Popolizio; Jose Apud; Daniel R. Weinberger; Alessandro Bertolino

Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships.


PLOS ONE | 2014

Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia

Antonio Rampino; Rosie M. Walker; Helen S. Torrance; Susan Anderson; Leonardo Fazio; Annabella Di Giorgio; Paolo Taurisano; Barbara Gelao; Raffaella Romano; Rita Masellis; Gianluca Ursini; Grazia Caforio; Giuseppe Blasi; J. Kirsty Millar; David J. Porteous; Pippa A. Thomson; Alessandro Bertolino; Kathryn L. Evans

Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.


Epigenetics | 2016

BDNF rs6265 methylation and genotype interact on risk for schizophrenia

Gianluca Ursini; Tommaso Cavalleri; Leonardo Fazio; Tiziana Angrisano; Luisa Iacovelli; Annamaria Porcelli; Giancarlo Maddalena; Giovanna Punzi; Marina Mancini; Barbara Gelao; Raffaella Romano; Rita Masellis; Francesca Calabrese; Antonio Rampino; Paolo Taurisano; Annabella Di Giorgio; Simona Keller; Letizia Tarantini; Lorenzo Sinibaldi; Tiziana Quarto; Teresa Popolizio; Grazia Caforio; Giuseppe Blasi; Marco Riva; Antonio De Blasi; Lorenzo Chiariotti; Valentina Bollati; Alessandro Bertolino

Abstract Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.


Psychopharmacology | 2014

DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine

Barbara Gelao; Leonardo Fazio; Pierluigi Selvaggi; Annabella Di Giorgio; Paolo Taurisano; Tiziana Quarto; Raffaella Romano; Annamaria Porcelli; Marina Mancini; Rita Masellis; Gianluca Ursini; Giuseppe De Simeis; Grazia Caforio; Laura Ferranti; Luciana Lo Bianco; Antonio Rampino; Orlando Todarello; Teresa Popolizio; Giuseppe Blasi; Alessandro Bertolino

RationalePharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks.ObjectiveWe used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back).MethodsFifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used.ResultsOn bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back.ConclusionsThese results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.


PLOS ONE | 2014

DRD2/CHRNA5 Interaction on Prefrontal Biology and Physiology during Working Memory

Annabella Di Giorgio; Ryan M. Smith; Leonardo Fazio; Enrico D'Ambrosio; Barbara Gelao; Aldo Tomasicchio; Pierluigi Selvaggi; Paolo Taurisano; Tiziana Quarto; Rita Masellis; Antonio Rampino; Grazia Caforio; Teresa Popolizio; Giuseppe Blasi; Wolfgang Sadee; Alessandro Bertolino

Background Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. Methods A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. Results We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. Conclusions The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.


Frontiers in Behavioral Neuroscience | 2014

Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2.

Paolo Taurisano; Raffaella Romano; Marina Mancini; Annabella Di Giorgio; Linda A. Antonucci; Leonardo Fazio; Antonio Rampino; Tiziana Quarto; Barbara Gelao; Annamaria Porcelli; Apostolos Papazacharias; Gianluca Ursini; Grazia Caforio; Rita Masellis; Artor Niccoli-Asabella; Orlando Todarello; Teresa Popolizio; Giuseppe Rubini; Giuseppe Blasi; Alessandro Bertolino

“Schizotypy” is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [123I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum.

Collaboration


Dive into the Rita Masellis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabella Di Giorgio

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge