Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert B. Abramovitch is active.

Publication


Featured researches published by Robert B. Abramovitch.


The EMBO Journal | 2003

Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death

Robert B. Abramovitch; Young Jin Kim; Shaorong Chen; Martin B. Dickman; Gregory B. Martin

The AvrPtoB type III effector protein is conserved among diverse genera of plant pathogens suggesting it plays an important role in pathogenesis. Here we report that Pseudomonas AvrPtoB acts inside the plant cell to inhibit programmed cell death (PCD) initiated by the Pto and Cf9 disease resistance proteins and, remarkably, the pro‐apoptotic mouse protein Bax. AvrPtoB also suppressed PCD in yeast, demonstrating that AvrPtoB functions as a cell death inhibitor across kingdoms. Using truncated AvrPtoB proteins, we identified distinct N‐ and C‐terminal domains of AvrPtoB that are sufficient for host recognition and PCD inhibition, respectively. We also identified a novel resistance phenotype, Rsb, that is triggered by an AvrPtoB truncation disrupted in the anti‐PCD domain. A Pseudomonas syringae pv. tomato DC3000 strain with a chromosomal mutation in the AvrPtoB C‐terminus elicited Rsb‐mediated immunity in previously susceptible tomato plants and disease was restored when full‐length AvrPtoB was expressed in trans. Thus, our results indicate that a type III effector can induce plant susceptibility to bacterial infection by inhibiting host PCD.


Nature Reviews Molecular Cell Biology | 2006

Bacterial elicitation and evasion of plant innate immunity.

Robert B. Abramovitch; Jeffrey C. Anderson; Gregory B. Martin

Recent research on plant responses to bacterial attack has identified extracellular and intracellular host receptors that recognize conserved pathogen-associated molecular patterns and more specialized virulence proteins, respectively. These findings have shed light on our understanding of the molecular mechanisms by which bacteria elicit host defences and how pathogens have evolved to evade or suppress these defences.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor.

Derrick E. Fouts; Robert B. Abramovitch; James R. Alfano; Angela M. Baldo; C. Robin Buell; Samuel Cartinhour; Arun K. Chatterjee; Mark D'Ascenzo; Michelle L. Gwinn; Sondra G. Lazarowitz; Nai-Chun Lin; Gregory B. Martin; Amos H. Rehm; David J. Schneider; Karin V. van Dijk; Xiaoyan Tang; Alan Collmer

The ability of Pseudomonas syringae pv. tomato DC3000 to parasitize tomato and Arabidopsis thaliana depends on genes activated by the HrpL alternative sigma factor. To support various functional genomic analyses of DC3000, and specifically, to identify genes involved in pathogenesis, we developed a draft sequence of DC3000 and used an iterative process involving computational and gene expression techniques to identify virulence-implicated genes downstream of HrpL-responsive promoters. Hypersensitive response and pathogenicity (Hrp) promoters are known to control genes encoding the Hrp (type III protein secretion) machinery and a few type III effector proteins in DC3000. This process involved (i) identification of 9 new virulence-implicated genes in the Hrp regulon by miniTn5gus mutagenesis, (ii) development of a hidden Markov model (HMM) trained with known and transposon-identified Hrp promoter sequences, (iii) HMM identification of promoters upstream of 12 additional virulence-implicated genes, and (iv) microarray and RNA blot analyses of the HrpL-dependent expression of a representative subset of these DC3000 genes. We found that the Hrp regulon encodes candidates for 4 additional type III secretion machinery accessory factors, homologs of the effector proteins HopPsyA, AvrPpiB1 (2 copies), AvrPpiC2, AvrPphD (2 copies), AvrPphE, AvrPphF, and AvrXv3, and genes associated with the production or metabolism of virulence factors unrelated to the Hrp type III secretion system, including syringomycin synthetase (SyrE), Nɛ-(indole-3-acetyl)-l-lysine synthetase (IaaL), and a subsidiary regulon controlling coronatine production. Additional candidate effector genes, hopPtoA2, hopPtoB2, and an avrRps4 homolog, were preceded by Hrp promoter-like sequences, but these had HMM expectation values of relatively low significance and were not detectably activated by HrpL.


Nature | 2007

A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity

Tracy R. Rosebrock; Lirong Zeng; Jennifer J. Brady; Robert B. Abramovitch; Fangming Xiao; Gregory B. Martin

Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated ‘effector’ proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB1–387) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB1–387 and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB1–387 and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.


Cell Host & Microbe | 2010

Mycobacterium tuberculosis Wears What It Eats

David G. Russell; Brian C. VanderVen; Wonsik Lee; Robert B. Abramovitch; Mi Jeong Kim; Stefan Niemann; Kyle H. Rohde

Mycobacterium tuberculosis remains one of the most pernicious of human pathogens. Current vaccines are ineffective, and drugs, although efficacious, require prolonged treatment with constant medical oversight. Overcoming these problems requires a greater appreciation of M. tuberculosis in the context of its host. Upon infection of either macrophages in culture or animal models, the bacterium realigns its metabolism in response to the new environments it encounters. Understanding these environments, and the stresses that they place on M. tuberculosis, should provide insights invaluable for the development of new chemo- and immunotherapeutic strategies.


Molecular Microbiology | 2011

aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome.

Robert B. Abramovitch; Kyle H. Rohde; Fong Fu Hsu; David G. Russell

Following phagocytosis by macrophages, Mycobacterium tuberculosis (Mtb) senses the intracellular environment and remodels its gene expression for growth in the phagosome. We have identified an acid and phagosome regulated (aprABC) locus that is unique to the Mtb complex and whose gene expression is induced during growth in acidic environments in vitro and in macrophages. Using the aprA promoter, we generated a strain that exhibits high levels of inducible fluorescence in response to growth in acidic medium in vitro and in macrophages. aprABC expression is dependent on the two‐component regulator phoPR, linking phoPR signalling to pH sensing. Deletion of the aprABC locus causes defects in gene expression that impact aggregation, intracellular growth, and the relative levels of storage and cell wall lipids. We propose a model where phoPR senses the acidic pH of the phagosome and induces aprABC expression to fine‐tune processes unique for intracellular adaptation of Mtb complex bacteria.


PLOS Pathogens | 2015

Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment.

Brian C. VanderVen; Ruth J. Fahey; Wonsik Lee; Yancheng Liu; Robert B. Abramovitch; Christine Memmott; Adam M. Crowe; Lindsay D. Eltis; Emanuele Perola; David D. Deininger; Tiansheng Wang; Christopher Locher; David G. Russell

Mycobacterium tuberculosis (Mtb) relies on a specialized set of metabolic pathways to support growth in macrophages. By conducting an extensive, unbiased chemical screen to identify small molecules that inhibit Mtb metabolism within macrophages, we identified a significant number of novel compounds that limit Mtb growth in macrophages and in medium containing cholesterol as the principle carbon source. Based on this observation, we developed a chemical-rescue strategy to identify compounds that target metabolic enzymes involved in cholesterol metabolism. This approach identified two compounds that inhibit the HsaAB enzyme complex, which is required for complete degradation of the cholesterol A/B rings. The strategy also identified an inhibitor of PrpC, the 2-methylcitrate synthase, which is required for assimilation of cholesterol-derived propionyl-CoA into the TCA cycle. These chemical probes represent new classes of inhibitors with novel modes of action, and target metabolic pathways required to support growth of Mtb in its host cell. The screen also revealed a structurally-diverse set of compounds that target additional stage(s) of cholesterol utilization. Mutants resistant to this class of compounds are defective in the bacterial adenylate cyclase Rv1625/Cya. These data implicate cyclic-AMP (cAMP) in regulating cholesterol utilization in Mtb, and are consistent with published reports indicating that propionate metabolism is regulated by cAMP levels. Intriguingly, reversal of the cholesterol-dependent growth inhibition caused by this subset of compounds could be achieved by supplementing the media with acetate, but not with glucose, indicating that Mtb is subject to a unique form of metabolic constraint induced by the presence of cholesterol.


PLOS Pathogens | 2013

Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell.

Shumin Tan; Neelima Sukumar; Robert B. Abramovitch; Tanya Parish; David G. Russell

The ability of Mycobacterium tuberculosis (Mtb) to thrive in its phagosomal niche is critical for its establishment of a chronic infection. This requires that Mtb senses and responds to intraphagosomal signals such as pH. We hypothesized that Mtb would respond to additional intraphagosomal factors that correlate with maturation. Here, we demonstrate that [Cl−] and pH correlate inversely with phagosome maturation, and identify Cl− as a novel environmental cue for Mtb. Mtb responds to Cl− and pH synergistically, in part through the activity of the two-component regulator phoPR. Following identification of promoters responsive to Cl− and pH, we generated a reporter Mtb strain that detected immune-mediated changes in the phagosomal environment during infection in a mouse model. Our study establishes Cl− and pH as linked environmental cues for Mtb, and illustrates the utility of reporter bacterial strains for the study of Mtb-host interactions in vivo.


Applied and Environmental Microbiology | 2006

Diverse AvrPtoB Homologs from Several Pseudomonas syringae Pathovars Elicit Pto-Dependent Resistance and Have Similar Virulence Activities

Nai-Chun Lin; Robert B. Abramovitch; Young Jin Kim; Gregory B. Martin

ABSTRACT AvrPtoB is a type III effector protein from Pseudomonas syringae pv. tomato that physically interacts with the tomato Pto kinase and, depending on the host genotype, either elicits or suppresses programmed cell death associated with plant immunity. We reported previously that avrPtoB-related sequences are present in diverse gram-negative phytopathogenic bacteria. Here we describe characterization of avrPtoB homologs from P. syringae pv. tomato T1, PT23, and JL1065, P. syringae pv. syringae B728a, and P. syringae pv. maculicola ES4326. The avrPtoB homolog from P. syringae pv. maculicola, hopPmaL, was identified previously. The four new genes identified in this study are designated avrPtoBT1, avrPtoBPT23, avrPtoBJL1065, and avrPtoBB728a. The AvrPtoB homologs exhibit 52 to 66% amino acid identity with AvrPtoB. Transcripts of each of the avrPtoB homologs were detected in the Pseudomonas strains from which they were isolated. Proteins encoded by the homologs were detected in all strains except P. syringae pv. tomato T1, suggesting that T1 suppresses accumulation of AvrPtoBT1. All of the homologs interacted with the Pto kinase in a yeast two-hybrid system and elicited a Pto-dependent defense response when they were delivered into leaf cells by DC3000ΔavrPtoΔavrPtoB, a P. syringae pv. tomato strain with a deletion of both avrPto and avrPtoB. Like AvrPtoB, all of the homologs enhanced the ability of DC3000ΔavrPtoΔavrPtoB to form lesions on leaves of two susceptible tomato lines. With the exception of HopPmaL which lacks the C-terminal domain, all AvrPtoB homologs suppressed programmed cell death elicited by the AvrPto-Pto interaction in an Agrobacterium-mediated transient assay. Thus, despite their divergent sequences, AvrPtoB homologs from diverse P. syringae pathovars have conserved avirulence and virulence activities similar to AvrPtoB activity.


Molecular Microbiology | 2014

Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources

Jacob J. Baker; Benjamin K. Johnson; Robert B. Abramovitch

During pathogenesis, Mycobacterium tuberculosis (Mtb) colonizes environments, such as the macrophage or necrotic granuloma, that are acidic and rich in cholesterol and fatty acids. The goal of this study was to examine how acidic pH and available carbon sources interact to regulate Mtb physiology. Here we report that Mtb growth at acidic pH requires host‐associated carbon sources that function at the intersection of glycolysis and the TCA cycle, such as pyruvate, acetate, oxaloacetate and cholesterol. In contrast, in other tested carbon sources, Mtb fully arrests its growth at acidic pH and establishes a state of non‐replicating persistence. Growth‐arrested Mtb is resuscitated by the addition of pyruvate suggesting that growth arrest is due to a pH‐dependent checkpoint on metabolism. Additionally, we demonstrate that the phoPR two‐component regulatory system is required to slow Mtb growth at acidic pH and functions to maintain redox homeostasis. Transcriptional profiling and functional metabolic studies demonstrate that signals from acidic pH and carbon source are integrated to remodel pathways associated with anaplerotic central metabolism, lipid anabolism and the regeneration of oxidized cofactors. Because phoPR is required for Mtb virulence in animals, we suggest that pH‐driven adaptation may be critical to Mtb pathogenesis.

Collaboration


Dive into the Robert B. Abramovitch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiqing Zheng

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Kyle H. Rohde

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Needle

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge