Robert Bergström
Swedish Meteorological and Hydrological Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Bergström.
Journal of the Atmospheric Sciences | 2002
Robert Bergström; Philip B. Russell; Phillip Hignett
Abstract Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate λ−1 variation between 0.40 and 1.0 μm. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a λ−1 variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albe...
Tellus B | 2007
Camilla Andersson; Joakim Langner; Robert Bergström
Measurements of changes in the atmospheric O2/N2 ratio have typically relied on compressed air derived from highpressure tanks as the reference material against which atmospheric changes are assessed. The validity of this procedure is examined here in the context of the history of 18 O2/N2 reference tanks compared over a 12-yr time-frame. By considering differences in tank sizes, material types, and by performing additional tests, the long-term stability of the delivered gas is evaluated with respect to surface reactions, leakage, regulator effects, and thermal diffusion and gravimetric fractionation. Results are also reported for the stability of CO2 in these tanks. The results emphasize the importance of orienting tanks horizontally within a thermally insulated enclosure to reduce thermal and gravimetric fractionation of both O2/N2 and CO2 concentrations, and they emphasize the importance of avoiding elastomeric Orings at the head-valve base. With the procedures documented here, the long-term drift in O2/N2 appears to be zero to within approximately ±0.4 per meg yr-1, which projects to an uncertainty of ±0.16 Pg C yr-1 (1ó) in O2-based global carbon budgets.
Journal of Atmospheric Chemistry | 2002
Stefan Tilmes; Jørgen Brandt; F. Flatoy; Robert Bergström; Johannes Flemming; Joakim Langner; Jesper Christensen; Lise Marie Frohn; Øystein Hov; Ingo Jacobsen; Eberthard Reimer; R. Stern; Jörg Zimmermann
Eulerian state-of-the-art air pollution forecasting systems on the European scale are operated routinely by several countries in Europe. DWD and FUB, both Germany, NERI, Denmark, NILU, Norway, and SMHI, Sweden, operate some of these systems. To apply such modeling systems, e.g. for regulatory purposes according to new EU directives, an evaluation and comparison of the model systems is fundamental in order to assess their reliability. One step in this direction is presented in this study: The model forecasts from all five systems have been compared to measurements of ground level ozone in Germany. The outstanding point in this investigation is the availability of a huge amount of data – from forecasts by the different model systems and from observations. This allows for a thorough interpretation of the findings and assures the significance of the observed features. Data from more than 300 measurement stations for a 5-month period (May–September 1999) of the German monitoring networks have been used in this comparison. Different spatial and temporal statistical parameters were applied in the evaluation. Generally, it was found that the most comprehensive models gave the best results. However, the less comprehensive and computational cheaper models also produced good results. The extensive comparison made it possible to point out weak points in the different models and to describe the individual model behavior for a full summer period in a climatological sense. The comparison also gave valuable information for an assessment of individual measurement stations and complete monitoring networks in terms of the representativeness of the observation data.
Journal of Geophysical Research | 2004
Robert Bergström; Peter Pilewskie; J. Pommier; M. Rabbette; P. B. Russell; Beat Schmid; J. Redemann; A. Higurashi; Teruyuki Nakajima; Patricia K. Quinn
[1] As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. In this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. On both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-Asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H. Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol mixture of both industrial pollution (including black carbon) and mineral dust. This underscores the need for careful measurements and analysis to separate out the absorption effects of mineral dust and black carbon in the east Asia region. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 9320 Information Related to Geographic Region: Asia;
International Journal of Quantum Chemistry | 1998
Petter Persson; Arvids Stashans; Robert Bergström; Sten Lunell
A new parametrization for use in periodic semiempirical quantum-chemical INDO calculations is proposed. Parameter sets for C and N atoms are tested on a number of C- and N-containing molecules, giving reasonably good agreement with experimental data and/or ab initio results. The new parametrization is intended for studies of organic adsorbates on oxide surfaces using a periodic large unit cell (LUC) model. As an example, two possible adsorption geometries for bi-isonicotinic acid on a TiO2 rutile(110) surface were investigated, and structural effects involved in the adsorption are discussed.
Advances in Quantum Chemistry | 2002
Petter Persson; Robert Bergström; Lars Ojamäe; Sten Lunell
A review of recent research, as well as new results, are presented on transition metal oxide clusters, surfaces, and crystals. Quantum-chemical calculations of clusters of first row transition metal oxides have been made to evaluate the accuracy of ab initio and density functional calculations. Adsorbates on metal oxide surfaces have been studied with both ab initio and semi-empirical methods, and results are presented for the bonding and electronic interactions of large organic adsorbates, e.g. aromatic molecules, on Ti02 and ZnO. Defects and intercalation, notably of H, Li, and Na in Ti02 have been investigated theoretically. Comparisons with experiments are made throughout to validate the calculations. Finally, the role of quantum-chemical calculations in the study of metal oxide based photoelectrochemical devices, such as dyesensitized solar cells and electrochromic displays. is discussed.
Geophysical Research Letters | 1999
Robert Bergström; P. B. Russell
We estimate solar radiative flux changes due to aerosols over the mid-latitude North Atlantic by combining optical depths from AVHRR measurements with aerosol properties from the recent TARFOX program. Results show that, over the ocean the aerosol decreases the net radiative flux at the tropopause and therefore has a cooling effect. Cloud-free, 24-hour average flux changes range from -9 W/sq m near the eastern US coast in summer to -1 W/sq m in the mid-Atlantic during winter. Cloud-free North Atlantic regional averages range from -5.1 W/sq m in summer to -1.7 W/sq m in winter, with an annual average of -3.5 W/sq m. Cloud effects estimated from ISCCP data, reduce the regional annual average to -0.8 W/sq m. All values are for the moderately absorbing TARFOX aerosol (omega(0.55 microns) = 0.9); values for a nonabsorbing aerosol are approx. 30% more negative. We compare our results to a variety of other calculations of aerosol radiative effects.
AMBIO: A Journal of the Human Environment | 2009
Magnuz Engardt; Robert Bergström; Camilla Andersson
Abstract We used an off-line, regional, model of atmospheric transport and chemistry to investigate current and future levels of near-surface ozone and accumulated ozone exposure over a threshold of 40 ppb(v) (AOT40) in Europe. To describe the current situation and enable an evaluation of the models performance we simulated a number of years around 2000. To assess changes in ozone concentrations due to possible emission changes in Europe, the model was run with the meteorology of the early 2000s and precursor emissions from a set of Clean Air for Europe (CAFE) emissions scenarios. By extrapolation of the observed increase in near-surface O3 at coastal locations in northwest Europe we constructed model boundaries that were used to simulate the impact of increasing hemispheric background in 2020. To assess changes in ozone concentrations due to climate change, the model was run with recent (2000) emissions but using meteorology from a regional climate model simulating a control (1961–1990) and a future (2021–2050) climate. The results indicate that climate change will have a small impact on ozone concentrations and AOT40 in the Nordic countries. Changes in hemispheric background concentrations and changes in precursor emissions in Europe will have a larger effect on ozone in Northern Europe. The situation is quite different in southern Europe, where climate change is expected to result in a very large increase in near-surface ozone concentrations.
Geophysical Research Letters | 2006
Robert Vautard; M. Van Loon; M. Schaap; Robert Bergström; Bertrand Bessagnet; Jørgen Brandt; Peter Builtjes; Jesper Christensen; C. Cuvelier; Arno Graff; J.E. Jonson; M. Krol; Joakim Langner; P. Roberts; Laurence Rouil; R. Stern; L. Tarrason; P. Thunis; Elisabetta Vignati; Les White; Peter Wind
We examine whether seven state-of-the-art European regional air quality models provide daily ensembles of predicted ozone maxima that encompass observations. Using tools borrowed from the evaluation of ensemble weather forecasting, we analyze statistics of simulated ensembles of ozone daily maxima over an entire summer season. Although the model ensemble overestimates ozone, the distribution of simulated concentrations is representative of the uncertainty. The spread of simulations is due to random fluctuations resulting from differences in model formulations and input data, but also to the spread between individual model systematic biases. The ensemble average skill increases as the spread decreases. The skill of the ensemble in giving probabilistic predictions of threshold exceedances is also demonstrated. These results allow for optimism about the ability of this ensemble to simulate the uncertainty of the impact of emission control scenarios.
Geophysical Research Letters | 2000
Peter Pilewskie; M. Rabbette; Robert Bergström; J. Marquez; Beat Schmid; P. B. Russell
Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm−2 per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.