Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Gilliam is active.

Publication


Featured researches published by Robert C. Gilliam.


Bulletin of the American Meteorological Society | 2009

A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations.

Christopher P. Weaver; Xin-Zhong Liang; Jinhong Zhu; P. J. Adams; P. Amar; J. Avise; Michael Caughey; Jack Chen; R. C. Cohen; E. Cooter; J. P. Dawson; Robert C. Gilliam; Alice B. Gilliland; Allen H. Goldstein; A. Grambsch; D. Grano; Alex Guenther; W. I. Gustafson; Robert A. Harley; Sheng He; B. Hemming; Christian Hogrefe; Ho Chun Huang; Sherri W. Hunt; Daniel J. Jacob; Patrick L. Kinney; Kenneth E. Kunkel; Jean-Francois Lamarque; Brian K. Lamb; Narasimhan K. Larkin

This paper provides a synthesis of results that have emerged from recent modeling studies of the potential sensitivity of U.S. regional ozone (O3) concentrations to global climate change (ca. 2050). This research has been carried out under the auspices of an ongoing U.S. Environmental Protection Agency (EPA) assessment effort to increase scientific understanding of the multiple complex interactions among climate, emissions, atmospheric chemistry, and air quality. The ultimate goal is to enhance the ability of air quality managers to consider global change in their decisions through improved characterization of the potential effects of global change on air quality, including O3 The results discussed here are interim, representing the first phase of the EPA assessment. The aim in this first phase was to consider the effects of climate change alone on air quality, without accompanying changes in anthropogenic emissions of precursor pollutants. Across all of the modeling experiments carried out by the differe...


Journal of Applied Meteorology and Climatology | 2010

Performance Assessment of New Land Surface and Planetary Boundary Layer Physics in the WRF-ARW

Robert C. Gilliam; Jonathan E. Pleim

Abstract The Pleim–Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and have been used extensively by the air quality modeling community, so there was a need based on several factors to extend these parameterizations to WRF. Simulations executed with the new WRF physics are compared with simulations produced with the MM5 and another WRF configuration with a focus on the replication of near-surface meteorological conditions and key planetary boundary layer features. The new physics in WRF is recommended for retrospective simulations, in particular, those used to drive air quality simulations. In the summer, the error of all variables analyzed was slightly lower across the domain in t...


Journal of Applied Meteorology and Climatology | 2009

An Indirect Data Assimilation Scheme for Deep Soil Temperature in the Pleim-Xiu Land Surface Model

Jonathan E. Pleim; Robert C. Gilliam

The Pleim‐Xiu land surface model (PX LSM) has been improved by the addition of a second indirect data assimilation scheme. The first, which was described previously, is a technique in which soil moisture is nudged according to the biases in 2-m air temperature and relative humidity between the model- and observationbased analyses. The new technique involves nudging the deep soil temperature in the soil temperature force‐ restore (FR) model according to model bias in 2-m air temperature only during nighttime. While the FR technique is computationally efficient and very accurate for the special conditions for which it was derived, it is very dependent on the deep soil temperature that drives the restoration term of the surface soil temperature equation. Thus, adjustment of the deep soil temperature to optimize the 2-m air temperature during the night, when surface forcing is minimal, provides significant advantages over other methods of deep soil moisture initialization. Simulations of the Weather Research and Forecasting Model (WRF) using the PX LSM with and without the new deep soil temperature nudging scheme demonstratesubstantial benefits of the new scheme for reducing error and bias of the 2-m air temperature. The effects of the new nudging scheme are most pronounced in the winter (January 2006) during which the model’s cold bias is greatly reduced. Air temperature error and bias are also reduced in a summer simulation (August 2006) with the greatest benefits in less vegetated and more arid regions. Thus, the deep temperature nudging scheme complements the soil moisture nudging scheme because it is most effective for conditions in which the soil moisture scheme is least effective, that is, when evapotranspiration is not important (winter and arid climates).


Environmental Modelling and Software | 2011

Overview of the atmospheric model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models

K. Wyat Appel; Robert C. Gilliam; Neil Davis; Alexis Zubrow; Steven Howard

This paper describes the details of the Atmospheric Model Evaluation Tool (AMET) v1.1 created by scientists in the Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environmental Protection Agency (EPA). AMET was first developed to evaluate the performance of the 5th Generation Mesoscale Model (MM5) and the Weather Research and Forecasting (WRF) meteorological model output and was later extended to include capabilities for evaluating output data from the Community Multiscale Air Quality (CMAQ) model as well. AMET is designed to leverage several open-source software packages that are used in combination to 1) pair the modeled and observed values in time and space, 2) store these paired datasets in an easily accessible and searchable database and 3) access and analyze these data using a statistical package. Through this process, AMET is able to provide a convenient method for evaluating meteorological and air quality model predictions. The use of a searchable, relational database allows the entire dataset to be quickly subset into only those data that are of the most interest for the current analysis, a process that is often tedious and time consuming without the use of a database. In addition to common summary statistics (e.g. RMSE, bias, and correlation), several of the many analysis features available in AMET include scatter plots, time series plots, box plot and spatial plots as part of operational model evaluation. Additionally, several unique analysis functions are also available in AMET, and the system provides a framework within which users may extend the current functionality for their own custom analyses. While AMET was designed to work specifically with MM5, WRF and CMAQ model output, it could easily be modified to work with output data from other meteorological and air quality models.


Journal of Applied Meteorology and Climatology | 2014

An Observation-Based Investigation of Nudging in WRF for Downscaling Surface Climate Information to 12-km Grid Spacing

O. Russell Bullock; Kiran Alapaty; Jerold A. Herwehe; Megan S. Mallard; Tanya L. Otte; Robert C. Gilliam; Christopher G. Nolte

AbstractPrevious research has demonstrated the ability to use the Weather Research and Forecasting model (WRF) and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal grid spacing of 36 km. Environmental managers and urban planners have expressed the need for even finer resolution in projections of surface-level weather to take into account local geophysical and urbanization patterns. In this study, WRF as previously applied at 36-km grid spacing is used with 12-km grid spacing with one-way nesting to simulate the year 2006 over the central and eastern United States. The results at both resolutions are compared with hourly observations of surface air temperature, humidity, and wind speed. The 12- and 36-km simulations are also compared with precipitation data from three separate observation and analysis systems. The results show some additional accuracy with the refinement to 12-km horizontal grid spacing, but only when some form of interior nudging is appl...


Geoscientific Model Development | 2017

Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1

K. Wyat Appel; Sergey L. Napelenok; Kristen M. Foley; Havala O. T. Pye; Christian Hogrefe; Deborah Luecken; Jesse O. Bash; Shawn J. Roselle; Jonathan E. Pleim; Hosein Foroutan; William T. Hutzell; George Pouliot; Golam Sarwar; Kathleen M. Fahey; Brett Gantt; Robert C. Gilliam; Nicholas Heath; Daiwen Kang; Rohit Mathur; Donna B. Schwede; Tanya L. Spero; David C. Wong; Jeffrey Young

The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency’s (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was released to the public, incorporating a large number of science updates and extended capabilities over the previous release version of the model (v5.0.2). These updates include the following: improvements in the meteorological calculations in both CMAQ and the Weather Research and Forecast (WRF) model used to provide meteorological fields to CMAQ, updates to the gas and aerosol chemistry, revisions to the calculations of clouds and photolysis, and improvements to the dry and wet deposition in the model. Sensitivity simulations isolating several of the major updates to the modeling system show that changes to the meteorological calculations result in enhanced afternoon and early evening mixing in the model, periods when the model historically underestimates mixing. This enhanced mixing results in higher ozone (O3) mixing ratios on average due to reduced NO titration, and lower fine particulate matter (PM2.5) concentrations due to greater dilution of primary pollutants (e.g., elemental and organic carbon). Updates to the clouds and photolysis calculations greatly improve consistency between the WRF and CMAQ models and result in generally higher O3 mixing ratios, primarily due to reduced cloudiness and attenuation of photolysis in the model. Updates to the aerosol chemistry result in higher secondary organic aerosol (SOA) concentrations in the summer, thereby reducing summertime PM2.5 bias (PM2.5 is typically underestimated by CMAQ in the summer), while updates to the gas chemistry result in slightly higher O3 and PM2.5 on average in January and July. Overall, the seasonal variation in simulated PM2.5 generally improves in CMAQv5.1 (when considering all model updates), as simulated PM2.5 concentrations decrease in the winter (when PM2.5 is generally overestimated by CMAQ) and increase in the summer (when PM2.5 is generally underestimated by CMAQ). Ozone mixing ratios are higher on average with v5.1 vs. v5.0.2, resulting in higher O3 mean bias, as O3 tends to be overestimated by CMAQ throughout most of the year (especially at locations where the observed O3 is low); however, O3 correlation is largely improved with v5.1. Sensitivity simulations for several hypothetical emission reduction scenarios show that v5.1 tends to be slightly more responsive to reductions in NOx (NO + NO2), VOC and SOx (SO2 + SO4) emissions than v5.0.2, representing an improvement as previous studies have shown CMAQ to underestimate the observed reduction in O3 due to large, widespread reductions in observed emissions.


Journal of Geophysical Research | 2016

Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

Limei Ran; Jonathan E. Pleim; Robert C. Gilliam; Francis S. Binkowski; Christian Hogrefe; Lawrence E. Band

Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvements may be needed in the CMAQ dry deposition model for low LAI areas where deposition on the soil surface becomes important.


Journal of Geophysical Research | 2015

Sensitivity of the Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and albedo

Limei Ran; Robert C. Gilliam; Francis S. Binkowski; Aijun Xiu; Jonathan E. Pleim; Lawrence E. Band

This study aims to improve land surface processes in a retrospective meteorology and air quality modeling system through the use of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation and albedo products for more realistic vegetation and surface representation. MODIS leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FPAR), and albedo are incorporated into the Pleim-Xiu land surface model (PX LSM) used in a combined meteorology and air quality modeling system. The current PX LSM intentionally exaggerates vegetation coverage and LAI in western dry lands so that its soil moisture nudging scheme is more effective in simulating surface temperature and mixing ratio. Reduced vegetation coverage from the PX LSM with MODIS input results in hotter and dryer daytime conditions with reduced ozone dry deposition velocities in much of western North America. Evaluations of the new system indicate greater error and bias in temperature, but reduced error and bias in moisture with the MODIS vegetation input. Hotter daytime temperatures and reduced dry deposition result in greater ozone concentrations in the western arid regions even with deeper boundary layer depths. MODIS albedo has much less impact on the meteorology simulations than MODIS LAI and FPAR. The MODIS vegetation and albedo input does not have much influence in the east where differences in vegetation and albedo parameters are less extreme. Evaluation results showing increased temperature errors with more accurate representation of vegetation suggests that improvements are needed in the model surface physics, particularly the soil processes in the PX LSM.


Archive | 2011

Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

Rohit Mathur; Robert C. Gilliam; O. Russell Bullock; Shawn J. Roselle; Jonathan E. Pleim; David C. Wong; Francis S. Binkowski; David G. Streets

The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for the year 2006 using identical projections and grid configurations. The ability of the model to represent long-range transport of air pollutants is analyzed for selected cases through comparison with available surface, aloft and remotely sensed observations. These demonstrate the feasibility of extending the applicability of the CMAQ modeling system to hemispheric scales to provide a conceptual framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales in a consistent manner.


Environmental Modelling and Software | 2010

Linking air quality and watershed models for environmental assessments: Analysis of the effects of model-specific precipitation estimates on calculated water flux

Heather E. Golden; Christopher D. Knightes; Ellen J. Cooter; Robin L. Dennis; Robert C. Gilliam; Kristen M. Foley

Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each models temporal and spatial representation of precipitation needs to be consistent. We explore how precipitation implemented within the Community Multi-Scale Air Quality Model (CMAQ) model algorithms, and multiple spatially-explicit precipitation datasets that could be used to improve the CMAQ model deposition estimates, links with the standard precipitation sources used to calibrate watershed models (i.e., rain gage data) via modeled water fluxes. Simulations are run using a grid-based watershed mercury model (GBMM) in two watersheds. Modeled monthly runoff suggests that multiple resolution Parameter-elevations Regressions on Independent Slopes Model (PRISM) and National Multi-sensor Precipitation Analysis Stage IV (NPA) data generate similar monthly runoff estimates, with comparable or greater accuracy when evaluated against stream gage data than that produced by the base rain gage data. However, across longer time periods, simulated water balances using 36 km Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) data are similar to that of base data. The investigation also examines the implications our results, providing suggestions for linking air quality and watershed fate and transport models.

Collaboration


Dive into the Robert C. Gilliam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Hogrefe

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Rohit Mathur

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

David C. Wong

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

George Pouliot

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Shawn J. Roselle

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Alice B. Gilliland

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Francis S. Binkowski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Golam Sarwar

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Young

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge