Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Noland is active.

Publication


Featured researches published by Robert C. Noland.


Cell Metabolism | 2008

Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

Timothy R. Koves; John R. Ussher; Robert C. Noland; Dorothy H. Slentz; Merrie Mosedale; Olga Ilkayeva; James R. Bain; Robert D. Stevens; Jason R. B. Dyck; Christopher B. Newgard; Gary D. Lopaschuk; Deborah M. Muoio

Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.


Journal of Biological Chemistry | 2009

Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control.

Robert C. Noland; Timothy R. Koves; Sarah E. Seiler; Helen Lum; Robert M. Lust; Olga Ilkayeva; Robert D. Stevens; Fausto G. Hegardt; Deborah M. Muoio

In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine dimunition was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete β-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.


Journal of Clinical Investigation | 2014

FGF21 is an endocrine signal of protein restriction

Thomas Laeger; Tara M. Henagan; Diana C. Albarado; Leanne M. Redman; George A. Bray; Robert C. Noland; Heike Münzberg; Susan M. Hutson; Thomas W. Gettys; Michael W. Schwartz; Christopher D. Morrison

Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver Fgf21 expression was increased within 24 hours of reduced protein intake. In humans, circulating FGF21 levels increased dramatically following 28 days on a LP diet. LP-induced increases in FGF21 were associated with increased phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the liver, and both baseline and LP-induced serum FGF21 levels were reduced in mice lacking the eIF2α kinase general control nonderepressible 2 (GCN2). Finally, while protein restriction altered food intake, energy expenditure, and body weight gain in WT mice, FGF21-deficient animals did not exhibit these changes in response to a LP diet. These and other data demonstrate that reduced protein intake underlies the increase in circulating FGF21 in response to starvation and a ketogenic diet and that FGF21 is required for behavioral and metabolic responses to protein restriction. FGF21 therefore represents an endocrine signal of protein restriction, which acts to coordinate metabolism and growth during periods of reduced protein intake.


Medicine and Science in Sports and Exercise | 2001

Effect of intense training on plasma leptin in male and female swimmers

Robert C. Noland; James T. Baker; Sarah R. Boudreau; Richard W. Kobe; Charles J. Tanner; Robert C. Hickner; Michael R. McCammon; Joseph A. Houmard

PURPOSE The purpose of this study was to determine whether fasting plasma leptin concentration was altered with an increase in training volume in competitive male and female athletes. METHODS Intercollegiate male (N = 9) and female (N = 12) swimmers were examined during the preseason and at two times during the mid-season (mid-season 1 and mid-season 2) when training volume was relatively high (33,000 m.wk(-1)). Body composition (hydrostatic weighing), energy intake and expenditure, and fasting plasma leptin concentration were measured. RESULTS In the women, there was a significant (P < 0.05) decline in fat mass (2 kg) with the increase in training volume, which was not accompanied by a reduction in fasting leptin (12.8 +/- 1.5 vs 11.0 +/- 1.2 vs 11.0 +/- 1.5 ng.mL(-1) for preseason, mid-season 1, and mid-season 2, respectively). In the men, there were no significant changes in body composition, body mass, or fasting leptin (4.4 +/- 0.8 vs 4.3 +/- 0.8 vs 4.6 +/- 0.8 ng.mL(-1), respectively). CONCLUSION These findings suggest 1) plasma leptin is not sensitive to an increase in training volume and 2) leptin may not be indicative of changes in fat mass with an increase in training volume in female athletes. These data suggest that leptin may not be useful in monitoring relative training stress in athletes.


Journal of Lipid Research | 2014

Obesity and lipid stress inhibit carnitine acetyltransferase activity.

Sarah E. Seiler; Ola J. Martin; Robert C. Noland; Dorothy H. Slentz; Karen L. DeBalsi; Olga R. Ilkayeva; Christopher B. Newgard; Timothy R. Koves; Deborah M. Muoio

Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.


American Journal of Physiology-renal Physiology | 2014

Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

Christine Ruggiero; Carrie M. Elks; Claudia Kruger; Ellen Cleland; Kaity Addison; Robert C. Noland; Krisztian Stadler

Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism

Shawna Wicks; Bolormaa Vandanmagsar; Kimberly R. Haynie; Scott Fuller; Jaycob D. Warfel; Jacqueline M. Stephens; Miao Wang; Xianlin Han; Jingying Zhang; Robert C. Noland; Randall L. Mynatt

Significance Many theories regarding the causes of insulin resistance in skeletal muscle center on the ability of muscle to oxidize fat, with evidence supporting either decreased or increased fatty acid oxidation (FAO) as causal to insulin resistance. Inhibition of fatty acid transport into mitochondria specifically in mouse muscle results in a rather remarkable phenotype. Despite an accumulation of lipids in muscle, insulin sensitivity is maintained. The muscle responds to decreased FAO by adapting muscle metabolism to use other fuel sources, and by an increased reliance upon peroxisomal fat oxidation. There is also an increase in mitochondrial biogenesis. At the whole-body level, the mice seem to enter an energy conservation mode with reduced activity, energy expenditure, and resistance to diet-induced obesity. The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity.


Endocrinology | 2010

Regulation of Islet β-Cell Pyruvate Metabolism: Interactions of Prolactin, Glucose, and Dexamethasone

Ramamani Arumugam; Eric Horowitz; Robert C. Noland; Danhong Lu; Donald E. Fleenor; Michael Freemark

Prolactin (PRL) induces beta-cell proliferation and glucose-stimulated insulin secretion (GSIS) and counteracts the effects of glucocorticoids on insulin production. The mechanisms by which PRL up-regulates GSIS are unknown. We used rat islets and insulinoma (INS-1) cells to explore the interactions of PRL, glucose, and dexamethasone (DEX) in the regulation of beta-cell pyruvate carboxylase (PC), pyruvate dehydrogenase (PDH), and the pyruvate dehydrogenase kinases (PDKs), which catalyze the phosphorylation and inactivation of PDH. PRL increased GSIS by 37% (P < 0.001) in rat islets. Glucose at supraphysiological concentrations (11 mm) increased PC mRNA in islets; in contrast, PRL suppressed PC mRNA levels in islets and INS-1 cells, whereas DEX was without effect. Neither PRL nor DEX altered PC protein or activity levels. In INS-1 cells, PRL increased PDH activity 1.4- to 2-fold (P < 0.05-0.001) at glucose concentrations ranging from 2.5-11 mm. DEX reduced PDH activity; this effect was reversed by PRL. PDK1, -2, -3, and -4 mRNAs were detected in both islets and insulinoma cells, but the latter expressed trivial amounts of PDK4. PRL reduced PDK2 mRNA and protein levels in rat islets and INS-1 cells and PDK4 mRNA in islets; DEX increased PDK2 mRNA in islets and INS-1 cells; this effect was reversed by PRL. Our findings suggest that PRL induction of GSIS is mediated by increases in beta-cell PDH activity; this is facilitated by suppression of PDKs. PRL counteracts the effects of DEX on PDH and PDK expression, suggesting novel roles for the lactogens in the defense against diabetes.


Diabetes | 2014

NT-PGC-1α Activation Attenuates High-Fat Diet–Induced Obesity by Enhancing Brown Fat Thermogenesis and Adipose Tissue Oxidative Metabolism

Hee-Jin Jun; Yagini Joshi; Yuvraj Patil; Robert C. Noland; Ji Suk Chang

The transcriptional coactivator peroxisome proliferator–activated receptor γ coactivator (PGC)-1α and its splice variant N terminal (NT)-PGC-1α regulate adaptive thermogenesis by transcriptional induction of thermogenic and mitochondrial genes involved in energy metabolism. We previously reported that full-length PGC-1α (FL-PGC-1α) is dispensable for cold-induced nonshivering thermogenesis in FL-PGC-1α−/− mice, since a slightly shorter but functionally equivalent form of NT-PGC-1α (NT-PGC-1α254) fully compensates for the loss of FL-PGC-1α in brown and white adipose tissue. In the current study, we challenged FL-PGC-1α−/− mice with a high-fat diet (HFD) to investigate the effects of diet-induced thermogenesis on HFD-induced obesity. Despite a large decrease in locomotor activity, FL-PGC-1α−/− mice exhibited the surprising ability to attenuate HFD-induced obesity. Reduced fat mass in FL-PGC-1α−/− mice was closely associated with an increase in body temperature, energy expenditure, and whole-body fatty acid oxidation (FAO). Mechanistically, FL-PGC-1α−/− brown adipose tissue had an increased capacity to oxidize fatty acids and dissipate energy as heat, in accordance with upregulation of thermogenic genes UCP1 and DIO2. Furthermore, augmented expression of FAO and lipolytic genes in FL-PGC-1α−/− white adipose tissue was highly correlated with decreased fat storage in adipose tissue. Collectively, our data highlight a protective effect of NT-PGC-1α on diet-induced obesity by enhancing diet-induced thermogenesis and FAO.


The Journal of Clinical Endocrinology and Metabolism | 2015

Perilipin 3 Differentially Regulates Skeletal Muscle Lipid Oxidation in Active, Sedentary, and Type 2 Diabetic Males

Jeffrey D. Covington; Robert C. Noland; R. Caitlin Hebert; Blaine S. Masinter; Steven R. Smith; Arild C. Rustan; Eric Ravussin; Sudip Bajpeyi

CONTEXT The role of perilipin 3 (PLIN3) on lipid oxidation is not fully understood. OBJECTIVE We aimed to 1) determine whether skeletal muscle PLIN3 protein content is associated with lipid oxidation in humans, 2) understand the role of PLIN3 in lipid oxidation by knocking down PLIN3 protein content in primary human myotubes, and 3) compare PLIN3 content and its role in lipid oxidation in human primary skeletal muscle cultures established from sedentary, healthy lean (leans), type 2 diabetic (T2D), and physically active donors. DESIGN, PARTICIPANTS, AND INTERVENTION This was a clinical investigation of 29 healthy, normoglycemic males and a cross-sectional study using primary human myotubes from five leans, four T2D, and four active donors. Energy expenditure, whole-body lipid oxidation, PLIN3 protein content in skeletal muscle tissue, and ex vivo muscle palmitate oxidation were measured. Myotubes underwent lipolytic stimulation (palmitate, forskolin, inomycin [PFI] cocktail), treatment with brefeldin A (BFA), and knockdown of PLIN3 using siRNA. SETTING Experiments were performed in a Biomedical Research Institute. MAIN OUTCOME MEASURES Protein content, 24-hour respiratory quotient (RQ), and ex vivo/in vitro lipid oxidations. RESULTS PLIN3 protein content was associated with 24-h RQ (r = -0.44; P = .02) and skeletal muscle-specific ex vivo palmitate oxidation (r = 0.61; P = .02). PLIN3 knockdown showed drastic reductions in lipid oxidation in myotubes from leans. Lipolytic stimulation increased PLIN3 protein in cells from leans over T2Ds with little expression in active participants. Furthermore, treatment with BFA, known to inhibit coatomers that associate with PLIN3, reduced lipid oxidation in cells from lean and T2D, but not in active participants. CONCLUSIONS Differential expression of PLIN3 and BFA sensitivity may explain differential lipid oxidation efficiency in skeletal muscle among these cohorts.

Collaboration


Dive into the Robert C. Noland's collaboration.

Top Co-Authors

Avatar

Randall L. Mynatt

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Burk

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Karlstad

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Susan J. Burke

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Jason Collier

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Shawna Wicks

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Heidi M. Batdorf

Pennington Biomedical Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge