Robert C. Thomson
Rice University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert C. Thomson.
Journal of Biomaterials Science-polymer Edition | 1996
Robert C. Thomson; Michael J. Yaszemski; John M. Powers; Antonios G. Mikos
We present a novel method for manufacturing three-dimensional, biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for use in bone regeneration. The technique involves the formation of a composite material consisting of gelatin microspheres surrounded by a PLGA matrix. The gelatin microspheres are leached out leaving an open-cell foam with a pore size and morphology defined by the gelatin microspheres. The foam porosity can be controlled by altering the volume fraction of gelatin used to make the composite material. PLGA 50:50 was used as a model degradable polymer to establish the effect of porosity, pore size, and degradation on foam mechanical properties. The yield strengths and moduli in compression of PLGA 50:50 foams were found to decrease with increasing porosity according to power law relationships. These mechanical properties were however, largely unaffected by pore size. Foams with yield strengths up to 3.2 MPa were manufactured. From in vitro degradation studies we established that for PLGA 50:50 foams the mechanical properties declined in parallel with the decrease in molecular weight. Below a weight average molecular weight of 10,000 the foam had very little mechanical strength (0.02 MPa). These results indicate that PLGA 50:50 foams are not suitable for replacement of trabecular bone. However, the dependence of mechanical properties on porosity, pore size, and degree of degradation which we have determined will aid us in designing a biodegradable scaffold suitable for bone regeneration.
Biomaterials | 1998
Robert C. Thomson; Michael J. Yaszemski; John M. Powers; Antonios G. Mikos
A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.
Advances in Polymer Science | 1995
Robert C. Thomson; M. C. Wake; Michael J. Yaszemski; Antonios G. Mikos
The problem of donor scarcity precludes the widespread utilization of whole organ transplantation as a therapy to treat many diseases for which there is often no alternative treatment. Cell transplantation using biodegradable polymer scaffolds offers the possibility to create completely natural new tissue and replace organ function. Tissue inducing biodegradable polymers can also be utilized to regenerate certain tissues and without the need for in vitro cell culture. Biocompatible, biodegradable polymers play an important role in organ regeneration as temporary substrates to transplanted cells which allow cell attachment, growth, and retention of differentiated function. Novel processing techniques have been developed to manufacture reproducibly scaffolds with high porosities for cell seeding and large surface areas for cell attachment. These scaffolds have been used to demonstrate the feasibility of regenerating several organs.
Biomaterials | 1999
Robert C. Thomson; Antonios G. Mikos; Elizabeth Beahm; James C. Lemon; William C. Satterfield; Thomas B. Aufdemorte; Michael J. Miller
A successful tissue engineering method for bone replacement would imitate natural bone graft by providing the essential elements for new bone formation using synthetic scaffolds, osteogenic cell populations, and bone induction factors. This is a study of the suitability of various formulations of poly(DL-lactic-co-glycolic acid) (PLGA) foams to provide a tissue conducting scaffold in an ovine model for bone flap fabrication. Three formulations were used of different copolymer ratio and molecular weight. Porous wafers of PLGA were stacked into rectangular chambers (volume 4 cm3) enclosed on five sides. Some chambers also contained autologous morcellized bone graft (MBG). The chambers were inserted with the open face adjacent to the cambium layer of the periosteum in rib beds of seven sheep and harvested after 8 weeks in vivo. Gross and histologic examination of the resulting tissue specimens demonstrated molded units of vascularized tissue generally conforming to the shape of the chambers and firmly attached to the periosteum. Polymer degradation appeared to occur by varying degrees based on polymer formulation. New bone formation was observed only in areas containing MBG. There was no evidence of significant inflammatory reaction or local tissue damage at 8 weeks. We conclude that a PLGA foam scaffold is (1) an efficient conductor of new tissue growth but not osteoinductive, (2) contributes to the shape of molded tissue, and (3) biocompatible when used in this model. Further studies are warranted to develop practical methods to deliver bone induction factors to the system to promote osseous tissue generation throughout the synthetic scaffold.
Journal of Biomedical Materials Research | 1997
Giovanni G. Giordano; Robert C. Thomson; Susan L. Ishaug; Antonios G. Mikos; Salimah Cumber; Charles A. Garcia; Devjani Lahiri-Munir
Alterations in the normal structure or functions of retinal pigment epithelium (RPE) can result in a number of ocular diseases. Implantation of RPE cells cultured on thin, biodegradable polymer films may provide a means of transplanting an organized sheet of RPE cells with distinct apical/basal characteristics for the restoration of normal RPE function. We have investigated the interactions of human RPE cells with different biodegradable polymer films to assess their suitability as substrates for RPE culture. Four biodegradable polymers were used: low molecular weight (MW) 50:50 poly(DL-lactic-co-glycolic acid) (PLGA); high MW 50:50 PLGA; 75:25 PLGA; and poly(L-lactic acid) (PLLA). Polymer film substrates were manufactured using a solvent casting technique. Human fetal RPE cells (10-16 weeks gestational) were plated on the polymer substrates and the cultures assessed with respect to cell attachment and proliferation. Histological and immunohistochemical studies were performed on the cells after 8 days in culture. RPE cells attached to all the polymers studied after 8 h in culture. After 8 h, 80.2 +/- 9.5% and 82.3 +/- 7.9% of the plated cells were attached to substrates of high MW 50:50 PLGA and 75:25 PLGA, respectively. The cells proliferated on all substrates, and there was about a threefold increase in cell number over the 8-day culture period on all the polymers studied. Immunohistochemistry after 8 days in culture demonstrated RPE cells labeled with a distinct reaction product for cytokeratin in the cell cytoplasm. All the polymers studied were suitable for RPE culture; however, high MW 50:50 PLGA and 75:25 PLGA proved to be the best in terms of manufacturing properties, cell attachment, and proliferation. These polymers can provide a suitable substrate for RPE cell culture and hold promise for the subretinal implantation of organized sheets of RPE cells.
Biomaterials | 1996
Robert C. Thomson; Giovanni G. Giordano; Joel H. Collier; Susan L. Ishaug; Antonios G. Mikos; Devjani Lahiri-Munir; Charles A. Garcia
Abstract For many disorders of the retinal pigment epithelium (RPE) for which there are no effective treatments, transplantation of RPE cells may provide a viable means of restoring function. Using a solvent casting technique, we have manufactured thin films of poly( l -lactic acid) and poly( dl -lactic-co-glycolic acid) 75:25 and 50:50. Non-porous, flexible films with controlled thickness as thin as 12 ± 3 μm and reproducible surface morphologies and flexural properties were produced. Fetal human RPE cells were found to attach to these substrates when cultured in vitro . The films made using this technique may provide a means of transplanting allogeneic RPE cells as a therapy for a number of ocular diseases related to RPE dysfunction.
MRS Proceedings | 1995
Robert C. Thomson; Michael J. Yaszemski; John M. Powers; Timothy P. Harrigan; Antonios G. Mikos
A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic- co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. The foam porosity can be controlled by altering the volume fraction of porogen used to make the composite material. Foams made using NaCl particles as a porogen were manufactured with porosities as high as 0.84±0.01 (n=3). The short hydroxyapatite fibers served to reinforce the PLGA. The compressive yield strength of foams manufactured using gelatin microspheres as a porogen was found to increase with fiber content. Foams with compressive yield strengths up to 2.82±0.63 MPa (n=3) with porosities of 0.47±0.01 (n=3) were manufactured using 30% by weight hydroxyapatite fibers in the initial composite prior to leaching. These composite foams with improved mechanical properties may also be expected to have enhanced osteoconductivity and hence provide a novel material which may prove useful in the field of bone regeneration.
MRS Proceedings | 1993
Robert C. Thomson; Michael J. Yaszemski; John M. Powers; Antonios G. Mikos
We present a novel method for manufacturing three-dimensional, biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for use in bone regeneration. The technique involves the formation of a composite material consisting of gelatin microspheres surrounded by a PLGA matrix. The gelatin microspheres are leached out leaving an open-cell foam with a pore size and morphology defined by the gelatin microspheres. The foam porosity can be controlled by altering the volume fraction of gelatin used to make the composite material. PLGA 50:50 was used as a model degradable polymer to establish the effect of porosity, pore size, and degradation on foam mechanical properties. The compressive strengths and moduli of PLGA 50:50 foams were found to decrease with increasing porosity but were largely unaffected by pore size. Foams with compressive strengths up to 2.5 MPa were manufactured. From in vitro degradation studies we established that for PLGA 50:50 foams the mechanical properties declined in parallel with the decrease in molecular weight. Below a weight average molecular weight of 10,000 the foam had very little mechanical strength (0.02 MPa). These results indicate that PLGA 50:50 would not be suitable as a scaffold material for bone regeneration. However, the dependence of mechanical properties on porosity, pore size, and degree of degradation which we have determined will aid us in designing a PLGA foam (with a comonomer ratio other than 50:50) suitable for bone regeneration.
Principles of Tissue Engineering (Second Edition) | 2000
Robert C. Thomson; Albert K. Shung; Michael J. Yaszemski; Antonios G. Mikos
Biotechnology and Bioengineering | 1994
Antonios G. Mikos; Maria Papadaki; Stylianos Kouvroukoglou; Susan L. Ishaug; Robert C. Thomson
Collaboration
Dive into the Robert C. Thomson's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs