Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Nicholls is active.

Publication


Featured researches published by Robert J. Nicholls.


Science | 2010

Sea-Level Rise and Its Impact on Coastal Zones

Robert J. Nicholls; Anny Cazenave

Global sea levels have risen through the 20th century. These rises will almost certainly accelerate through the 21st century and beyond because of global warming, but their magnitude remains uncertain. Key uncertainties include the possible role of the Greenland and West Antarctic ice sheets and the amplitude of regional changes in sea level. In many areas, nonclimatic components of relative sea-level change (mainly subsidence) can also be locally appreciable. Although the impacts of sea-level rise are potentially large, the application and success of adaptation are large uncertainties that require more assessment and consideration.


Global Environmental Change Part B: Environmental Hazards | 2003

Resilience to natural hazards: How useful is this concept?

Richard J.T. Klein; Robert J. Nicholls; Frank Thomalla

Abstract Resilience is widely seen as a desirable system property in environmental management. This paper explores the concept of resilience to natural hazards, using weather-related hazards in coastal megacities as an example. The paper draws on the wide literature on megacities, coastal hazards, hazard risk reduction strategies, and resilience within environmental management. Some analysts define resilience as a system attribute, whilst others use it as an umbrella concept for a range of system attributes deemed desirable. These umbrella concepts have not been made operational to support planning or management. It is recommended that resilience only be used in a restricted sense to describe specific system attributes concerning (i) the amount of disturbance a system can absorb and still remain within the same state or domain of attraction and (ii) the degree to which the system is capable of self-organisation. The concept of adaptive capacity, which has emerged in the context of climate change, can then be adopted as the umbrella concept, where resilience will be one factor influencing adaptive capacity. This improvement to conceptual clarity would foster much-needed communication between the natural hazards and the climate change communities and, more importantly, offers greater potential in application, especially when attempting to move away from disaster recovery to hazard prediction, disaster prevention, and preparedness.


Philosophical Transactions of the Royal Society A | 2011

Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century

Robert J. Nicholls; Natasha Marinova; Jason Lowe; Sally Brown; Pier Vellinga; Diogo de Gusmão; Jochen Hinkel; Richard S.J. Tol

The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Coastal flood damage and adaptation costs under 21st century sea-level rise.

Jochen Hinkel; Daniel Lincke; Athanasios T. Vafeidis; Mahé Perrette; Robert J. Nicholls; Richard S.J. Tol; Ben Marzeion; Xavier Fettweis; Cezar Ionescu; Anders Levermann

Significance Coastal flood damages are expected to increase significantly during the 21st century as sea levels rise and socioeconomic development increases the number of people and value of assets in the coastal floodplain. Estimates of future damages and adaptation costs are essential for supporting efforts to reduce emissions driving sea-level rise as well as for designing strategies to adapt to increasing coastal flood risk. This paper presents such estimates derived by taking into account a wide range of uncertainties in socioeconomic development, sea-level rise, continental topography data, population data, and adaptation strategies. Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2–4.6% of global population is expected to be flooded annually in 2100 under 25–123 cm of global mean sea-level rise, with expected annual losses of 0.3–9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US


Philosophical Transactions of the Royal Society A | 2006

Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century

Robert J. Nicholls; Richard S.J. Tol

12–71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.


PLOS ONE | 2015

Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment

Barbara Neumann; Athanasios T. Vafeidis; Juliane Zimmermann; Robert J. Nicholls

Taking the Special Report on Emission Scenarios (SRES) climate and socio-economic scenarios (A1FI, A2, B1 and B2 ‘future worlds’), the potential impacts of sea-level rise through the twenty-first century are explored using complementary impact and economic analysis methods at the global scale. These methods have never been explored together previously. In all scenarios, the exposure and hence the impact potential due to increased flooding by sea-level rise increases significantly compared to the base year (1990). While mitigation reduces impacts, due to the lagged response of sea-level rise to atmospheric temperature rise, impacts cannot be avoided during the twenty-first century by this response alone. Cost–benefit analyses suggest that widespread protection will be an economically rational response to land loss due to sea-level rise in the four SRES futures that are considered. The most vulnerable future worlds to sea-level rise appear to be the A2 and B2 scenarios, which primarily reflects differences in the socio-economic situation (coastal population, Gross Domestic Product (GDP) and GDP/capita), rather than the magnitude of sea-level rise. Small islands and deltaic settings stand out as being more vulnerable as shown in many earlier analyses. Collectively, these results suggest that human societies will have more choice in how they respond to sea-level rise than is often assumed. However, this conclusion needs to be tempered by recognition that we still do not understand these choices and significant impacts remain possible. Future worlds which experience larger rises in sea-level than considered here (above 35 cm), more extreme events, a reactive rather than proactive approach to adaptation, and where GDP growth is slower or more unequal than in the SRES futures remain a concern. There is considerable scope for further research to better understand these diverse issues.


Global Environmental Change-human and Policy Dimensions | 2001

Millions at risk: defining critical climate change threats and targets

Martin L. Parry; Nigel W. Arnell; Tony McMichael; Robert J. Nicholls; Pim Martens; Sari Kovats; Matthew Livermore; Cynthia Rosenzweig; Ana Iglesias; G. Fischer

Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we identify needs for further research and scope for improvement in this kind of scenario-based exposure analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Physical and economic consequences of climate change in Europe

Juan Carlos Ciscar; Ana Iglesias; Luc Feyen; László Szabó; Denise Van Regemorter; Bas Amelung; Robert J. Nicholls; Paul Watkiss; Ole Bøssing Christensen; Rutger Dankers; Luis Garrote; Claire M. Goodess; Alistair Hunt; Alvaro Moreno; Julie Richards; Antonio Soria

Agreements to mitigate climate change have been hampered by several things, not least their cost. But the cost might well be more acceptable if we had a clear picture of what damages would be avoided by different levels of emissions reductions, in other words, a clear idea of the pay off. The problem is that we do not. The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) published this year (IPCC (2001a) and IPCC (2001b)) lists a wide range of potential impacts but has difficulty in discriminating between those that are critical in their nature and magnitude from those that are less important. Yet, the identification of critical impacts (e.g. ones that should be avoided at any reasonable cost) is obviously a key to addressing targets for mitigating climate change. Indeed, a central objective of the UN Framework Objective on Climate Change (UNFCCC) is to avoid “dangerous levels” of climate change that could threaten food security, ecosystems and sustainable development (areas of risk that are specifically mentioned in UNFCCC Article 2). For several years, we have been researching impacts in key areas of risk: hunger, water shortage, exposure to malaria transmission, and coastal flooding, as part of a global fast-track assessment (Parry and Livermore, 1999). 1 The results of our work have been reported widely and form a significant part of the IPCCs assessment of likely impacts (IPCC (2001a) and IPCC (2001b)). But they are scattered through different parts of the IPCC report and other literature and, before now, we have not brought them together. For this review, we have graphed our estimates of effects as a single measure: the additional millions of people who could be placed at risk as a result of different amounts of global warming ( Fig. 1). Full-size image (36K) - Opens new window Full-size image (36K) Fig. 1. Additional millions at risk due to climate change in 2050s and 2080s for hunger, coastal flooding, water shortage and malaria. The width of the curve indicates one standard deviation of variance around the mean, based on results from four HadCM2 experiments (Parry and Livermore, 1999; IPCC, 2000). Solid lines indicate model-based estimates. Dotted lines are inferred ( IPCC (2001a) and IPCC, 2001b. Climate change 2001: The Scientific Basis. Technical Summary of the Working Group I Report, Geneva, 2001.IPCC (2001b)) and intended as schematic. Stab. 450 (etc.)=stabilisation@450 ppmv (etc.). View Within Article The figure shows the increase in millions at risk due to higher temperatures for two time periods—2050s and 2080s. The analysis takes into account likely non-climate developments such as growth in population, and income and developments of technology, and these become important assumptions behind future trends in, for example, increases in crop yield and the building of coastal defences. These developments themselves have very great effects on the numbers at risk and represent a (non-climate change) reference case. The graph thus shows the additional millions at risk due specifically to estimated future changes in climate. But now for the caveats: the reference case is only for one future world (what the IPCC used to call a best estimate or “business-as-usual” future, now referred to as IS92a). More recently, the IPCC has explored a set of six different developmental pathways that the world may follow (IPCC, 2000), and the millions at risk in these alternative futures will certainly differ. Our work on these is in hand but will probably take a year to complete. We need also to emphasise that the graph is a global estimate which hides important regional variations and, so far, it is based on one model of future climate patterns (the UKs Hadley Centre second generation global climate model) ( Johns et al., 1997). While these are the only global impact estimates currently available, we need urgently to complete similar ones for different climate models and for a variety of development pathways. Five important points emerge from this figure. First, the curves of additional millions at risk generally become steeper over time. Less obviously, this results as much from a larger and more vulnerable exposed population in 2080 than in 2050, as from increases in temperature or inferred changes in precipitation and sea-level rise. For example, the remarkable steepness of the water shortage curve in 2080 is the outcome of very large city populations in China and India becoming newly at risk. In the case of hunger, however, the rising curve in 2080 stems from widespread heat stress of crops, while up to about 2050 lesser amounts of warming lead to yield gains in temperate regions that balance losses elsewhere and lead to only small net increases in hunger (Parry and Livermore, 1999). These complex interactions between exposure and climate change tell a clear story: there will be more millions at risk as time progresses. Secondly, the figure indicates how much we need to reduce emissions in order to draw-down significantly the numbers at risk. We have estimated effects assuming that atmospheric concentrations of CO2 are stabilised at 750 parts per million (ppmv) by 2250 and at 550 ppmv by 2150 (Arnell, in press). These are approximately equivalent, respectively, to 10 times and 20 times the reduction in emissions assumed in the Kyoto Protocol. The 750 ppmv target delays the damage but does not avoid it. By 2080, it would halve the number at risk from hunger and flooding, reduce the population at risk of malaria by perhaps a third and water shortage by about a quarter. But to bring risk levels down from hundreds to tens of millions would require a stabilisation target of about 550 ppmv. We have also indicated on the graph, but only in a schematic form, the approximate locations of 450, 650 and 1000 ppmv stabilisation pathways and their effect on millions at risk (IPCC (2001a) and IPCC (2001b)). Although impact analyses have not yet been conducted for these stabilisation levels, it appears that the 450 ppmv pathway would achieve very great reductions in millions at risk, although very high costs of mitigation would be incurred. It is precisely this kind of pay-off that needs to be analysed properly. A third conclusion is that information is now available that can help inform the selection of climate change targets. Thus far these targets, such as Kyoto, have been chosen in broadly a top–down manner, without clear knowledge of the impacts that would be avoided, and that has been partly their weakness. Now we may argue, for example, that in order to keep damages below an agreed tolerable level (for example, a given number of additional people at risk) global temperature increases would need to be kept below a given amount; and emissions targets could then be developed to achieve that objective. Fourthly, it is clear that mitigation alone will not solve the problem of climate change. Adaptation will be necessary to avoid, or at least reduce, much of the possible damage, and since we need many of the benefits of adaptation today, regardless of climate change in the future (e.g. increased drought protection of agriculture, improved flood defences, more efficient use of water, better malaria control), many of the adaptive strategies for climate change can be “win–win”. We need to find a blend of mitigation and adaptation to meet the challenge of climate change. Mitigation can buy time for adaptation (for example, delaying impacts until improved technology and management can handle them), and adaptation can raise thresholds of tolerance that need to be avoided by mitigation (for example, by increasing drought tolerance of crops). Considered separately, they appear inadequate to meet such a challenge, but combined they would make a powerful response.


GeoJournal | 1995

Coastal megacities and climate change

Robert J. Nicholls

Quantitative estimates of the economic damages of climate change usually are based on aggregate relationships linking average temperature change to loss in gross domestic product (GDP). However, there is a clear need for further detail in the regional and sectoral dimensions of impact assessments to design and prioritize adaptation strategies. New developments in regional climate modeling and physical-impact modeling in Europe allow a better exploration of those dimensions. This article quantifies the potential consequences of climate change in Europe in four market impact categories (agriculture, river floods, coastal areas, and tourism) and one nonmarket impact (human health). The methodology integrates a set of coherent, high-resolution climate change projections and physical models into an economic modeling framework. We find that if the climate of the 2080s were to occur today, the annual loss in household welfare in the European Union (EU) resulting from the four market impacts would range between 0.2–1%. If the welfare loss is assumed to be constant over time, climate change may halve the EUs annual welfare growth. Scenarios with warmer temperatures and a higher rise in sea level result in more severe economic damage. However, the results show that there are large variations across European regions. Southern Europe, the British Isles, and Central Europe North appear most sensitive to climate change. Northern Europe, on the other hand, is the only region with net economic benefits, driven mainly by the positive effects on agriculture. Coastal systems, agriculture, and river flooding are the most important of the four market impacts assessed.


Nature | 2013

Ice-sheet mass balance and climate change

Edward Hanna; Francisco Navarro; Frank Pattyn; Catia M. Domingues; Xavier Fettweis; Erik R. Ivins; Robert J. Nicholls; Catherine Ritz; Ben Smith; Slawek Tulaczyk; Pippa L. Whitehouse; H. Jay Zwally

Rapid urbanization is projected to produce 20 coastal megacities (population exceeding 8 million) by 2010. This is mainly a developing world phenomenon: in 1990, there were seven coastal megacities in Asia (excluding those in Japan) and two in South America, rising by 2010 to 12 in Asia (including Istanbul), three in South America and one in Africa.All coastal locations, including megacities, are at risk to the impacts of accelerated global sea-level rise and other coastal implications of climate change, such as changing storm frequency. Further, many of the coastal megacities are built on geologically young sedimentary strata that are prone to subsidence given excessive groundwater withdrawal. At least eight of the projected 20 coastal megacities have experienced a local orrelative rise in sea level which often greatly exceeds any likely global sea-level rise scenario for the next century.The implications of climate change for each coastal megacity vary significantly, so each city requires independent assessment. In contrast to historical precedent, a proactive perspective towards coastal hazards and changing levels of risk with time is recommended. Low-cost measures to maintain or increase future flexibility of response to climate change need to be identified and implemented as part of an integrated approach to coastal management.

Collaboration


Dive into the Robert J. Nicholls's collaboration.

Top Co-Authors

Avatar

Susan Hanson

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Sally Brown

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Hinkel

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Mokrech

University of Houston–Clear Lake

View shared research outputs
Top Co-Authors

Avatar

Craig W. Hutton

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge