Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Schmittling is active.

Publication


Featured researches published by Robert J. Schmittling.


Journal of Clinical Oncology | 2010

Immunologic Escape After Prolonged Progression-Free Survival With Epidermal Growth Factor Receptor Variant III Peptide Vaccination in Patients With Newly Diagnosed Glioblastoma

John H. Sampson; Amy B. Heimberger; Gary E. Archer; Kenneth D. Aldape; Allan H. Friedman; Henry S. Friedman; Mark R. Gilbert; James E. Herndon; Roger E. McLendon; Duane Mitchell; David A. Reardon; Raymond Sawaya; Robert J. Schmittling; Weiming Shi; James J. Vredenburgh; Darell D. Bigner

PURPOSE Immunologic targeting of tumor-specific gene mutations may allow precise eradication of neoplastic cells without toxicity. Epidermal growth factor receptor variant III (EGFRvIII) is a constitutively activated and immunogenic mutation not expressed in normal tissues but widely expressed in glioblastoma multiforme (GBM) and other neoplasms. PATIENTS AND METHODS A phase II, multicenter trial was undertaken to assess the immunogenicity of an EGFRvIII-targeted peptide vaccine and to estimate the progression-free survival (PFS) and overall survival (OS) of vaccinated patients with newly diagnosed EGFRvIII-expressing GBM with minimal residual disease. Intradermal vaccinations were given until toxicity or tumor progression was observed. Sample size was calculated to differentiate between PFS rates of 20% and 40% 6 months after vaccination. RESULTS There were no symptomatic autoimmune reactions. The 6-month PFS rate after vaccination was 67% (95% CI, 40% to 83%) and after diagnosis was 94% (95% CI, 67% to 99%; n = 18). The median OS was 26.0 months (95% CI, 21.0 to 47.7 months). After adjustment for age and Karnofsky performance status, the OS of vaccinated patients was greater than that observed in a control group matched for eligibility criteria, prognostic factors, and temozolomide treatment (hazard ratio, 5.3; P = .0013; n = 17). The development of specific antibody (P = .025) or delayed-type hypersensitivity (P = .03) responses to EGFRvIII had a significant effect on OS. At recurrence, 82% (95% CI, 48% to 97%) of patients had lost EGFRvIII expression (P < .001). CONCLUSION EGFRvIII-targeted vaccination in patients with GBM warrants investigation in a phase III, randomized trial.


Neuro-oncology | 2008

Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma

Duane Mitchell; Weihua Xie; Robert J. Schmittling; Chris A. Learn; Allan H. Friedman; Roger E. McLendon; John H. Sampson

Human cytomegalovirus (HCMV) has been described to be associated with several human malignancies, though the frequency of detection remains controversial. It is unclear whether HCMV plays an active role in malignant tumor progression or becomes reactivated under pathologic conditions that result in chronic inflammation or immunosuppression. In this study, we report on the investigation of detecting HCMV in the tumors and peripheral blood of patients with newly diagnosed glioblastoma multiforme (GBM). Using immunohistochemistry, in situ hybridization, and polymerase chain reaction amplification of viral DNA, the detection of HCMV was investigated in tumor and blood specimens from patients with GBM as well as in the peripheral blood of normal volunteers and patients undergoing craniotomy for diagnoses other than GBM. We found that a high percentage (>90%) of GBM tumors, not surrounding normal brain, are associated with HCMV nucleic acids and proteins. Furthermore, a significant proportion of patients (80%) with newly diagnosed GBM have detectable HCMV DNA in their peripheral blood, while sero-positive normal donors and other surgical patients did not exhibit detectable virus, suggesting either a systemic reactivation of HCMV within patients with GBM or shedding of viral DNA from infected tumor cells into the periphery. These results confirm the association of HCMV with malignant gliomas and demonstrate that subclinical HCMV viremia (presence of viral DNA in blood without clinical symptoms of infection) is a previously unrecognized disease spectrum in patients with GBM.


Neuro-oncology | 2011

Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma

John H. Sampson; Kenneth D. Aldape; Gary E. Archer; April Coan; Annick Desjardins; Allan H. Friedman; Henry S. Friedman; Mark R. Gilbert; James E. Herndon; Roger E. McLendon; Duane A. Mitchell; David A. Reardon; Raymond Sawaya; Robert J. Schmittling; Weiming Shi; J. J. Vredenburgh; Darell D. Bigner; Amy B. Heimberger

Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation widely expressed in glioblastoma multiforme (GBM) and other neoplasms, but absent from normal tissues. Immunotherapeutic targeting of EGFRvIII could eliminate neoplastic cells more precisely but may be inhibited by concurrent myelosuppressive chemotherapy like temozolomide (TMZ), which produces a survival benefit in GBM. A phase II, multicenter trial was undertaken to assess the immunogenicity of an experimental EGFRvIII-targeted peptide vaccine in patients with GBM undergoing treatment with serial cycles of standard-dose (STD) (200 mg/m(2) per 5 days) or dose-intensified (DI) TMZ (100 mg/m(2) per 21 days). All patients receiving STD TMZ exhibited at least a transient grade 2 lymphopenia, whereas those receiving DI TMZ exhibited a sustained grade 3 lymphopenia (<500 cells/μL). CD3(+) T-cell (P = .005) and B-cell (P = .004) counts were reduced significantly only in the DI cohort. Patients in the DI cohort had an increase in the proportion of immunosuppressive regulatory T cells (T(Reg); P = .008). EGFRvIII-specific immune responses developed in all patients treated with either regimen, but the DI TMZ regimen produced humoral (P = .037) and delayed-type hypersensitivity responses (P = .036) of greater magnitude. EGFRvIII-expressing tumor cells were also eradicated in nearly all patients (91.6%; CI(95): 64.0%-99.8%; P < .0001). The median progression-free survival (15.2 months; CI(95): 11.0-18.5 months; hazard ratio [HR] = 0.35; P = .024) and overall survival (23.6 months; CI(95): 18.5-33.1 months; HR = 0.23; P = .019) exceeded those of historical controls matched for entry criteria and adjusted for known prognostic factors. EGFRvIII-targeted vaccination induces patient immune responses despite therapeutic TMZ-induced lymphopenia and eliminates EGFRvIII-expressing tumor cells without autoimmunity.


Clinical Cancer Research | 2014

EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss

John H. Sampson; Bryan D. Choi; Luis Sanchez-Perez; Carter M. Suryadevara; David Snyder; Catherine Flores; Robert J. Schmittling; Smita K. Nair; Elizabeth A. Reap; Pamela K. Norberg; James E. Herndon; Chien-Tsun Kuan; Richard A. Morgan; Steven A. Rosenberg; Laura A. Johnson

Purpose: Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. Experimental Design: We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. Results: At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIIINEG tumors, suggesting generation of host immunity against additional tumor antigens. Conclusion: All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. Clin Cancer Res; 20(4); 972–84. ©2013 AACR.


Clinical Cancer Research | 2008

A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells

Ling Yuan Kong; Mohamed Abou-Ghazal; Jun Wei; Arup Chakraborty; Wei Sun; Wei Qiao; Gregory N. Fuller; Izabela Fokt; Elizabeth A. Grimm; Robert J. Schmittling; Gary E. Archer; John H. Sampson; Waldemar Priebe; Amy B. Heimberger

Purpose: Activation of signal transducers and activators of transcription 3 (STAT3) has been identified as a central mediator of melanoma growth and metastasis. We hypothesized that WP1066, a novel STAT3 blockade agent, has marked antitumor activity, even against the melanoma metastasis to brain, a site typically refractory to therapies. Experimental Design: The antitumor activities and related mechanisms of WP1066 were investigated both in vitro on melanoma cell lines and in vivo on mice with subcutaneously syngeneic melanoma or with intracerebral melanoma tumors. Results: WP1066 achieved an IC50 of 1.6, 2.3, and 1.5 μmol/L against melanoma cell line A375, B16, and B16EGFRvIII, respectively. WP1066 suppressed the phosphorylation of Janus-activated kinase 2 and STAT3 (Tyr705) in these cells. Tumor growth in mice with subcutaneously established syngeneic melanoma was markedly inhibited by WP1066 compared with that in controls. Long-term survival (>78 days) was observed in 80% of mice with established intracerebral syngeneic melanoma treated with 40 mg/kg of WP1066 in contrast to control mice who survived for a median of 15 days. Although WP1066 did not induce immunologic memory or enhance humoral responses to EGFRvIII, this compound reduced the production of immunosuppressive cytokines and chemokines (transforming growth factor-β, RANTES, MCP-1, vascular endothelial growth factor), markedly inhibited natural and inducible Treg proliferation, and significantly increased cytotoxic immune responses of T cells. Conclusions: The antitumor cytotoxic effects of WP1066 and its ability to induce antitumor immune responses suggest that this compound has potential for the effective treatment of melanoma metastatic to brain.


PLOS ONE | 2012

A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma.

John H. Sampson; Robert J. Schmittling; Gary E. Archer; Kendra L. Congdon; Smita K. Nair; Elizabeth A. Reap; Annick Desjardins; Allan H. Friedman; Henry S. Friedman; James E. Herndon; April Coan; Roger E. McLendon; David A. Reardon; James J. Vredenburgh; Darell D. Bigner; Duane A. Mitchell

Background Preclinical studies in mice have demonstrated that the prophylactic depletion of immunosuppressive regulatory T-cells (TRegs) through targeting the high affinity interleukin-2 (IL-2) receptor (IL-2Rα/CD25) can enhance anti-tumor immunotherapy. However, therapeutic approaches are complicated by the inadvertent inhibition of IL-2Rα expressing anti-tumor effector T-cells. Objective To determine if changes in the cytokine milieu during lymphopenia may engender differential signaling requirements that would enable unarmed anti-IL-2Rα monoclonal antibody (MAbs) to selectively deplete TRegs while permitting vaccine-stimulated immune responses. Methodology A randomized placebo-controlled pilot study was undertaken to examine the ability of the anti-IL-2Rα MAb daclizumab, given at the time of epidermal growth factor receptor variant III (EGFRvIII) targeted peptide vaccination, to safely and selectively deplete TRegs in patients with glioblastoma (GBM) treated with lymphodepleting temozolomide (TMZ). Results and Conclusions Daclizumab treatment (n = 3) was well-tolerated with no symptoms of autoimmune toxicity and resulted in a significant reduction in the frequency of circulating CD4+Foxp3+ TRegs in comparison to saline controls (n = 3)( p = 0.0464). A significant (p<0.0001) inverse correlation between the frequency of TRegs and the level of EGFRvIII specific humoral responses suggests the depletion of TRegs may be linked to increased vaccine-stimulated humoral immunity. These data suggest this approach deserves further study. Trial Registration ClinicalTrials.gov NCT00626015


Blood | 2011

Monoclonal antibody blockade of IL-2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans.

Duane A. Mitchell; Xiuyu Cui; Robert J. Schmittling; Luis Sanchez-Perez; David Snyder; Kendra L. Congdon; Gary E. Archer; Annick Desjardins; Allan H. Friedman; Henry S. Friedman; James E. Herndon; Roger E. McLendon; David A. Reardon; J. J. Vredenburgh; Darell D. Bigner; John H. Sampson

Lymphodepletion augments adoptive cell transfer during antitumor immunotherapy, producing dramatic clinical responses in patients with malignant melanoma. We report that the lymphopenia induced by the chemotherapeutic agent temozolomide (TMZ) enhances vaccine-driven immune responses and significantly reduces malignant growth in an established model of murine tumorigenesis. Unexpectedly, despite the improved antitumor efficacy engendered by TMZ-induced lymphopenia, there was a treatment related increase in the frequency of immunosuppressive regulatory T cells (T(Regs); P = .0006). Monoclonal antibody (mAb)-mediated inhibition of the high-affinity IL-2 receptor α (IL-2Rα/CD25) during immunotherapy in normal mice depleted T(Regs) (73% reduction; P = .0154) but also abolished vaccine-induced immune responses. However, during lymphodepletion, IL-2Rα blockade decreased T(Regs) (93% reduction; P = .0001) without impairing effector T-cell responses, to augment therapeutic antitumor efficacy (66% reduction in tumor growth; P = .0024). Of clinical relevance, we also demonstrate that anti-IL-2Rα mAb administration during recovery from lymphodepletive TMZ in patients with glioblastoma reduced T(Reg) frequency (48% reduction; P = .0061) while permitting vaccine-stimulated antitumor effector cell expansion. To our knowledge, this is the first report of systemic antibody-mediated T(Reg) depletion during lymphopenia and the consequent synergistic enhancement of vaccine-driven cellular responses, as well as the first demonstration that anti-IL-2Rα mAbs function differentially in nonlymphopenic versus lymphopenic contexts.


Journal of Immunological Methods | 2008

Detection of humoral response in patients with glioblastoma receiving EGFRvIII-KLH vaccines

Robert J. Schmittling; Gary E. Archer; Duane A. Mitchell; Amy B. Heimberger; Charles N. Pegram; James E. Herndon; Henry S. Friedman; Darell D. Bigner; John H. Sampson

The epidermal growth factor receptor variant III (EGFRvIII) is a consistent tumor-specific mutation that is widely expressed in glioblastoma multiforme (GBM) and other neoplasms. As such it represents a truly tumor-specific target for antitumor immunotherapy. Although endogenous humoral responses to EGFRvIII have been reported in patients with EGFRvIII-expressing breast cancer, it is not known whether de novo responses can be generated or endogenous responses enhanced with an EGFRvIII-specific vaccine. To assess this in clinical trials, we have developed and validated an immunoassay to measure and isolate anti-EGFRvIII and anti-KLH antibodies from the serum of patients vaccinated with an EGFRvIII-specific peptide (PEPvIII) conjugated to keyhole limpet hemocyanin (KLH). Using magnetic beads with immobilized antigen we captured and detected anti-EGFRvIII and anti-KLH antibodies in serum from patients before and after vaccinations. Using this assay, we found that significant levels of antibody for tumor-specific antigen EGFRvIII (>4 microg/mL) and KLH could be induced after vaccination with PEPvIII-KLH.


Clinical Cancer Research | 2006

Profiling of CD4+, CD8+, and CD4+CD25+CD45RO+FoxP3+ T Cells in Patients with Malignant Glioma Reveals Differential Expression of the Immunologic Transcriptome Compared with T Cells from Healthy Volunteers

Chris A. Learn; Peter E. Fecci; Robert J. Schmittling; Weihua Xie; Isaac O. Karikari; Duane A. Mitchell; Gary E. Archer; ZhengZheng Wei; Holly K. Dressman; John H. Sampson

Purpose: Analyses of T-cell mRNA expression profiles in glioblastoma multiforme has not been previously reported but may help to define and characterize the immunosuppressed phenotype in patients with this type of cancer. Experimental Design: We did microarray studies that have shown significant and fundamental differences in the expression profiles of CD4+ and CD8+ T cells and immunosuppressive CD4+CD25+CD45RO+FoxP3+ regulatory T cells (Treg) from normal healthy volunteers compared with patients with newly diagnosed glioblastoma multiforme. For these investigations, we isolated total RNA from enriched CD4+ and CD8+ T cell or Treg cell populations from age-matched individuals and did microarray analyses. Results: ANOVA and principal components analysis show that the various T cell compartments exhibit consistently similar mRNA expression profiles among individuals within either healthy or brain tumor groups but reflect significant differences between these groups. Compared with healthy volunteers, CD4+ and CD8+ T cells from patients with glioblastoma multiforme display coordinate down-regulation of genes involved in T cell receptor ligation, activation, and intracellular signaling. In contrast, Tregs from patients with glioblastoma multiforme exhibit increased levels of transcripts involved in inhibiting host immunity. Conclusion: Our findings support the notion that key differences between expression profiles in T-cell populations from patients with glioblastoma multiforme results from differential expression of the immunologic transcriptome, such that a limited number of genes are principally important in producing the dysregulated T-cell phenotype.


PLOS ONE | 2013

Myeloablative Temozolomide Enhances CD8+ T-Cell Responses to Vaccine and Is Required for Efficacy against Brain Tumors in Mice

Luis Sanchez-Perez; Bryan D. Choi; Gary E. Archer; Xiuyu Cui; Catherine Flores; Laura A. Johnson; Robert J. Schmittling; David Snyder; James E. Herndon; Darell D. Bigner; Duane A. Mitchell; John H. Sampson

Temozolomide (TMZ) is an alkylating agent shown to prolong survival in patients with high grade glioma and is routinely used to treat melanoma brain metastases. A prominent side effect of TMZ is induction of profound lymphopenia, which some suggest may be incompatible with immunotherapy. Conversely, it has been proposed that recovery from chemotherapy-induced lymphopenia may actually be exploited to potentiate T-cell responses. Here, we report the first demonstration of TMZ as an immune host-conditioning regimen in an experimental model of brain tumor and examine its impact on antitumor efficacy of a well-characterized peptide vaccine. Our results show that high-dose, myeloablative (MA) TMZ resulted in markedly reduced CD4+, CD8+ T-cell and CD4+Foxp3+ TReg counts. Adoptive transfer of naïve CD8+ T cells and vaccination in this setting led to an approximately 70-fold expansion of antigen-specific CD8+ T cells over controls. Ex vivo analysis of effector functions revealed significantly enhanced levels of pro-inflammatory cytokine secretion from mice receiving MA TMZ when compared to those treated with a lower lymphodepletive, non-myeloablative (NMA) dose. Importantly, MA TMZ, but not NMA TMZ was uniquely associated with an elevation of endogenous IL-2 serum levels, which we also show was required for optimal T-cell expansion. Accordingly, in a murine model of established intracerebral tumor, vaccination-induced immunity in the setting of MA TMZ–but not lymphodepletive, NMA TMZ–led to significantly prolonged survival. Overall, these results may be used to leverage the side-effects of a clinically-approved chemotherapy and should be considered in future study design of immune-based treatments for brain tumors.

Collaboration


Dive into the Robert J. Schmittling's collaboration.

Top Co-Authors

Avatar

John H. Sampson

University of Texas System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duane A. Mitchell

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge