Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary E. Archer is active.

Publication


Featured researches published by Gary E. Archer.


Journal of Clinical Oncology | 2010

Immunologic Escape After Prolonged Progression-Free Survival With Epidermal Growth Factor Receptor Variant III Peptide Vaccination in Patients With Newly Diagnosed Glioblastoma

John H. Sampson; Amy B. Heimberger; Gary E. Archer; Kenneth D. Aldape; Allan H. Friedman; Henry S. Friedman; Mark R. Gilbert; James E. Herndon; Roger E. McLendon; Duane Mitchell; David A. Reardon; Raymond Sawaya; Robert J. Schmittling; Weiming Shi; James J. Vredenburgh; Darell D. Bigner

PURPOSE Immunologic targeting of tumor-specific gene mutations may allow precise eradication of neoplastic cells without toxicity. Epidermal growth factor receptor variant III (EGFRvIII) is a constitutively activated and immunogenic mutation not expressed in normal tissues but widely expressed in glioblastoma multiforme (GBM) and other neoplasms. PATIENTS AND METHODS A phase II, multicenter trial was undertaken to assess the immunogenicity of an EGFRvIII-targeted peptide vaccine and to estimate the progression-free survival (PFS) and overall survival (OS) of vaccinated patients with newly diagnosed EGFRvIII-expressing GBM with minimal residual disease. Intradermal vaccinations were given until toxicity or tumor progression was observed. Sample size was calculated to differentiate between PFS rates of 20% and 40% 6 months after vaccination. RESULTS There were no symptomatic autoimmune reactions. The 6-month PFS rate after vaccination was 67% (95% CI, 40% to 83%) and after diagnosis was 94% (95% CI, 67% to 99%; n = 18). The median OS was 26.0 months (95% CI, 21.0 to 47.7 months). After adjustment for age and Karnofsky performance status, the OS of vaccinated patients was greater than that observed in a control group matched for eligibility criteria, prognostic factors, and temozolomide treatment (hazard ratio, 5.3; P = .0013; n = 17). The development of specific antibody (P = .025) or delayed-type hypersensitivity (P = .03) responses to EGFRvIII had a significant effect on OS. At recurrence, 82% (95% CI, 48% to 97%) of patients had lost EGFRvIII expression (P < .001). CONCLUSION EGFRvIII-targeted vaccination in patients with GBM warrants investigation in a phase III, randomized trial.


Cancer Research | 2006

Increased Regulatory T-Cell Fraction Amidst a Diminished CD4 Compartment Explains Cellular Immune Defects in Patients with Malignant Glioma

Peter E. Fecci; Duane Mitchell; John F. Whitesides; Weihua Xie; Allan H. Friedman; Gary E. Archer; James E. Herndon; Darell D. Bigner; Glenn Dranoff; John H. Sampson

Immunosuppression is frequently associated with malignancy and is particularly severe in patients with malignant glioma. Anergy and counterproductive shifts toward T(H)2 cytokine production are long-recognized T-cell defects in these patients whose etiology has remained elusive for >30 years. We show here that absolute counts of both CD4(+) T cells and CD4(+)CD25(+)FOXP3(+)CD45RO(+) T cells (T(regs)) are greatly diminished in patients with malignant glioma, but T(regs) frequently represent an increased fraction of the remaining CD4 compartment. This increased T(reg) fraction, despite reduced counts, correlates with and is sufficient to elicit the characteristic manifestations of impaired patient T-cell responsiveness in vitro. Furthermore, T(reg) removal eradicates T-cell proliferative defects and reverses T(H)2 cytokine shifts, allowing T cells from patients with malignant glioma to function in vitro at levels equivalent to those of normal, healthy controls. Such restored immune function may give license to physiologic antiglioma activity, as in vivo, T(reg) depletion proves permissive for spontaneous tumor rejection in a murine model of established intracranial glioma. These findings dramatically alter our understanding of depressed cellular immune function in patients with malignant glioma and advance a role for T(regs) in facilitating tumor immune evasion in the central nervous system.


Journal of Neuro-oncology | 2003

Progress Report of a Phase I Study of the Intracerebral Microinfusion of a Recombinant Chimeric Protein Composed of Transforming Growth Factor (TGF)-α and a Mutated form of the Pseudomonas Exotoxin Termed PE-38 (TP-38) for the Treatment of Malignant Brain Tumors

John H. Sampson; Gamal Akabani; Gary E. Archer; Darell D. Bigner; Mitchel S. Berger; Allan H. Friedman; Henry S. Friedman; James E. Herndon; Sandeep Kunwar; Steve Marcus; Roger E. McLendon; Alison Paolino; Kara Penne; James M. Provenzale; Jennifer A. Quinn; David A. Reardon; Jeremy N. Rich; Timothy T. Stenzel; Sandra Tourt-Uhlig; Carol J. Wikstrand; Terence Z. Wong; Roger L. Williams; Fan Yuan; Michael R. Zalutsky; Ira Pastan

TP-38 is a recombinant chimeric targeted toxin composed of the EGFR binding ligand TGF-α and a genetically engineered form of the Pseudomonas exotoxin, PE-38. After in vitro and in vivo animal studies that showed specific activity and defined the maximum tolerated dose (MTD), we investigated this agent in a Phase I trial. The primary objective of this study was to define the MTD and dose limiting toxicity of TP-38 delivered by convection-enhanced delivery in patients with recurrent malignant brain tumors. Twenty patients were enrolled in the study and doses were escalated from 25ng/mL to 100 with a 40mL infusion volume delivered by two catheters. One patient developed Grade IV fatigue at the 100ng/mL dose, but the MTD has not been established. The overall median survival after TP-38 for all patients was 23 weeks whereas for those without radiographic evidence of residual disease at the time of therapy, the median survival was 31.9 weeks. Overall, 3 of 15 patients, with residual disease at the time of therapy, have demonstrated radiographic responses and one patient with a complete response and has survived greater than 83 weeks.


Neuro-oncology | 2011

Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma

John H. Sampson; Kenneth D. Aldape; Gary E. Archer; April Coan; Annick Desjardins; Allan H. Friedman; Henry S. Friedman; Mark R. Gilbert; James E. Herndon; Roger E. McLendon; Duane A. Mitchell; David A. Reardon; Raymond Sawaya; Robert J. Schmittling; Weiming Shi; J. J. Vredenburgh; Darell D. Bigner; Amy B. Heimberger

Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation widely expressed in glioblastoma multiforme (GBM) and other neoplasms, but absent from normal tissues. Immunotherapeutic targeting of EGFRvIII could eliminate neoplastic cells more precisely but may be inhibited by concurrent myelosuppressive chemotherapy like temozolomide (TMZ), which produces a survival benefit in GBM. A phase II, multicenter trial was undertaken to assess the immunogenicity of an experimental EGFRvIII-targeted peptide vaccine in patients with GBM undergoing treatment with serial cycles of standard-dose (STD) (200 mg/m(2) per 5 days) or dose-intensified (DI) TMZ (100 mg/m(2) per 21 days). All patients receiving STD TMZ exhibited at least a transient grade 2 lymphopenia, whereas those receiving DI TMZ exhibited a sustained grade 3 lymphopenia (<500 cells/μL). CD3(+) T-cell (P = .005) and B-cell (P = .004) counts were reduced significantly only in the DI cohort. Patients in the DI cohort had an increase in the proportion of immunosuppressive regulatory T cells (T(Reg); P = .008). EGFRvIII-specific immune responses developed in all patients treated with either regimen, but the DI TMZ regimen produced humoral (P = .037) and delayed-type hypersensitivity responses (P = .036) of greater magnitude. EGFRvIII-expressing tumor cells were also eradicated in nearly all patients (91.6%; CI(95): 64.0%-99.8%; P < .0001). The median progression-free survival (15.2 months; CI(95): 11.0-18.5 months; hazard ratio [HR] = 0.35; P = .024) and overall survival (23.6 months; CI(95): 18.5-33.1 months; HR = 0.23; P = .019) exceeded those of historical controls matched for entry criteria and adjusted for known prognostic factors. EGFRvIII-targeted vaccination induces patient immune responses despite therapeutic TMZ-induced lymphopenia and eliminates EGFRvIII-expressing tumor cells without autoimmunity.


Nature | 2015

Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients

Duane A. Mitchell; Kristen A. Batich; Michael D. Gunn; Min-Nung Huang; Luis Sanchez-Perez; Smita K. Nair; Kendra L. Congdon; Elizabeth A. Reap; Gary E. Archer; Annick Desjardins; Allan H. Friedman; Henry S. Friedman; James E. Herndon; April Coan; Roger E. McLendon; David A. Reardon; James J. Vredenburgh; Darell D. Bigner; John H. Sampson

After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.


Molecular Cancer Therapeutics | 2009

An epidermal growth factor receptor variant III–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme

John H. Sampson; Gary E. Archer; Duane A. Mitchell; Amy B. Heimberger; James E. Herndon; Denise Lally-Goss; Sharon McGehee-Norman; Alison Paolino; David A. Reardon; Allan H. Friedman; Henry S. Friedman; Darell D. Bigner

Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, such that their efficacy is ultimately limited by nonspecific toxicity. Immunologic targeting of tumor-specific gene mutations, however, may allow more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a consistent and tumor-specific mutation widely expressed in GBMs and other neoplasms. The safety and immunogenicity of a dendritic cell (DC)–based vaccine targeting the EGFRvIII antigen was evaluated in this study. Adults with newly diagnosed GBM, who had undergone gross-total resection and standard conformal external beam radiotherapy, received three consecutive intradermal vaccinations with autologous mature DCs pulsed with an EGFRvIII-specific peptide conjugated to keyhole limpet hemocyanin. The dose of DCs was escalated in cohorts of three patients. Patients were monitored for toxicity, immune response, radiographic and clinical progression, and death. No allergic reactions or serious adverse events were seen. Adverse events were limited to grade 2 toxicities. The maximum feasible dose of antigen-pulsed mature DCs was reached at 5.7 × 107 ± 2.9 × 107 SD without dose-limiting toxicity. EGFRvIII-specific immune responses were evident in most patients. The mean time from histologic diagnosis to vaccination was 3.6 ± 0.6 SD months. Median time to progression from vaccination was 6.8 months [95% confidence interval (C.I.95), 2.5–8.8], and median survival time from vaccination was 18.7 months (C.I.95, 14.5–25.6). Overall median survival from time of histologic diagnosis was 22.8 months (C.I.95, 17.5–29). This study establishes the EGFRvIII mutation as a safe and immunogenic tumor-specific target for immunotherapy. [Mol Cancer Ther 2009;8(10):2773–9]


Journal of NeuroVirology | 1998

The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target

Carol J. Wikstrand; Craig J. Reist; Gary E. Archer; Michael R. Zalutsky; Darell D. Bigner

Any immunotherapeutic approach to cancer cell eradication is based upon the specific recognition of neoplastic cells and the sparing of surrounding normal tissue; perhaps nowhere is this distinction more important than within the central nervous system, due to the diffuse infiltrative nature of primary glial tumor cell growth. Whether ultimate effect moieties are immunoglobulins, fragments and/or their constructs with drugs, toxins, radionuclides, or immune cells, the specificity of effector: cell surface marker is crucial. This review describes the identification, immunologic characterization, and biologic behavior of a transmembrane tumor-specific altered growth factor receptor molecule which may well serve as a mediator of multiple immunotherapeutic approaches: the class III variant of the epidermal growth factor receptor, EGFRvIII.


Clinical Cancer Research | 2007

Systemic CTLA-4 Blockade Ameliorates Glioma-Induced Changes to the CD4+ T Cell Compartment without Affecting Regulatory T-Cell Function

Peter E. Fecci; Hidenobu Ochiai; Duane A. Mitchell; Peter M. Grossi; Alison E. Sweeney; Gary E. Archer; Thomas J. Cummings; James P. Allison; Darell D. Bigner; John H. Sampson

Purpose: Patients with malignant glioma suffer global compromise of their cellular immunity, characterized by dramatic reductions in CD4+ T cell numbers and function. We have previously shown that increased regulatory T cell (Treg) fractions in these patients explain T-cell functional deficits. Our murine glioma model recapitulates these findings. Here, we investigate the effects of systemic CTLA-4 blockade in this model. Experimental Design: A monoclonal antibody (9H10) to CTLA-4 was employed against well-established glioma. Survival and risks for experimental allergic encephalomyelitis were assessed, as were CD4+ T cell numbers and function in the peripheral blood, spleen, and cervical lymph nodes. The specific capacities for anti-CTLA-4 to modify the functions of regulatory versus CD4+CD25− responder T cells were evaluated. Results: CTLA-4 blockade confers long-term survival in 80% of treated mice, without eliciting experimental allergic encephalomyelitis. Changes to the CD4 compartment were reversed, as anti-CTLA-4 reestablishes normal CD4 counts and abrogates increases in CD4+CD25+Foxp3+GITR+ regulatory T cell fraction observed in tumor-bearing mice. CD4+ T-cell proliferative capacity is restored and the cervical lymph node antitumor response is enhanced. Treatment benefits are bestowed exclusively on the CD4+CD25− T cell population and not Tregs, as CD4+CD25− T cells from treated mice show improved proliferative responses and resistance to Treg-mediated suppression, whereas Tregs from the same mice remain anergic and exhibit no restriction of their suppressive capacity. Conclusions: CTLA-4 blockade is a rational means of reversing glioma-induced changes to the CD4 compartment and enhancing antitumor immunity. These benefits were attained through the conferment of resistance to Treg-mediated suppression, and not through direct effects on Tregs.


Journal of Neurosurgery | 2010

Poor drug distribution as a possible explanation for the results of the PRECISE trial

John H. Sampson; Gary E. Archer; Christoph Pedain; Eva Wembacher-Schröder; Manfred Westphal; Sandeep Kunwar; Michael A. Vogelbaum; April Coan; James E. Herndon; Raghu Raghavan; Martin L. Brady; David A. Reardon; Allan H. Friedman; Henry S. Friedman; M. Inmaculada Rodríguez-Ponce; Susan M. Chang; Stephan Mittermeyer; Davi Croteau; Raj K. Puri; James M. Markert; Michael D. Prados; Thomas C. Chen; Adam N. Mamelak; Timothy F. Cloughesy; John S. Yu; Kevin O. Lillehei; Joseph M. Piepmeier; Edward Pan; Frank D. Vrionis; H. Lee Moffitt

OBJECT Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique. The purpose of the present work was to retrospectively analyze the expected drug distribution based on catheter positioning data available from the CED arm of the PRECISE trial. METHODS Data on catheter positioning from all patients randomized to the CED arm of the PRECISE trial were available for analyses. BrainLAB iPlan Flow software was used to estimate the expected drug distribution. RESULTS Only 49.8% of catheters met all positioning criteria. Still, catheter positioning score (hazard ratio 0.93, p = 0.043) and the number of optimally positioned catheters (hazard ratio 0.72, p = 0.038) had a significant effect on progression-free survival. Estimated coverage of relevant target volumes was low, however, with only 20.1% of the 2-cm penumbra surrounding the resection cavity covered on average. Although tumor location and resection cavity volume had no effect on coverage volume, estimations of drug delivery to relevant target volumes did correlate well with catheter score (p < 0.003), and optimally positioned catheters had larger coverage volumes (p < 0.002). Only overall survival (p = 0.006) was higher for investigators considered experienced after adjusting for patient age and Karnofsky Performance Scale score. CONCLUSIONS The potential efficacy of drugs delivered by CED may be severely constrained by ineffective delivery in many patients. Routine use of software algorithms and alternative catheter designs and infusion parameters may improve the efficacy of drugs delivered by CED.


Clinical Cancer Research | 2004

Resistance to Tyrosine Kinase Inhibition by Mutant Epidermal Growth Factor Receptor Variant III Contributes to the Neoplastic Phenotype of Glioblastoma Multiforme

Chris A. Learn; Tristan L. Hartzell; Carol J. Wikstrand; Gary E. Archer; Jeremy N. Rich; Allan H. Friedman; Henry S. Friedman; Darell D. Bigner; John H. Sampson

Purpose: We have reported previously that tumors expressing wild-type epidermal growth factor receptor (EGFR) in a murine model are sensitive to the EGFR tyrosine kinase inhibitor gefitinib, whereas tumors expressing mutant EGFR variant III (EGFRvIII) are resistant. Determination of how this differential inhibition occurs may be important to patient selection and treatment criteria, as well as the design of future therapeutics for glioblastoma multiforme. Experimental Design: We have determined and quantified how treatment with gefitinib at commonly used, noncytotoxic doses affects neoplastic functions ascribed to EGFRvIII, including downstream signaling by Akt, DNA synthesis, and cellular invasion. In doing so, we have tested and compared a series of wild-type and mutant EGFRvIII-expressing fibroblast and glioblastoma cell lines in vitro after treatment with gefitinib. Results: The results of these experiments demonstrate that short-term treatment with gefitinib (∼24 h) does not reduce phosphorylation of EGFRvIII, whereas EGFR phosphorylation is inhibited in a dose-dependent manner. However, after daily treatment with gefitinib, phosphorylation declines for EGFRvIII by day 3 and later. Nevertheless, after 7 days of daily treatment, cells that express and are dependent on EGFRvIII for tumorigenic growth are not effectively growth inhibited. This may be due in part to phosphorylation of Akt, which is inhibited in EGFR-expressing cells after treatment with gefitinib, but is unaffected in cells expressing EGFRvIII. Cell cycle analysis shows that nascent DNA synthesis in EGFR-expressing cells is inhibited in a dose-dependent manner by gefitinib, yet is unaffected in EGFRvIII-expressing cells with increasing dosage. Furthermore, cells expressing EGFRvIII demonstrate greater invasive capability with increasing gefitinib concentration when compared with cells expressing EGFR after treatment. Conclusions: We conclude that the neoplastic phenotype of EGFRvIII is relatively resistant to gefitinib and requires higher doses, repeated dosing, and longer exposure to decrease receptor phosphorylation. However, this decrease does not effectively inhibit the biologically relevant processes of DNA synthesis, cellular growth, and invasion in cells expressing EGFRvIII.

Collaboration


Dive into the Gary E. Archer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duane A. Mitchell

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy B. Heimberger

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge