Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Karban is active.

Publication


Featured researches published by Robert Karban.


Proceedings of SPIE | 2004

VLTI technical advances: present and future

Andreas Glindemann; Maja Albertsen; Luigi Andolfato; Gerardo Avila; Pascal Ballester; Bertrand Bauvir; Francoise Delplancke; Frederic Derie; Martin Dimmler; Philippe Duhoux; Emmanuel di Folco; R. Frahm; Emmanuel Galliano; Bruno Gilli; Paul Giordano; Philippe B. Gitton; Stephane Guisard; Nico Housen; Christian A. Hummel; Alexis Huxley; Robert Karban; Pierre Kervella; M. Kiekebusch; Bertrand Koehler; Samuel A. Leveque; Tom Licha; Antonio Longinotti; Derek J. McKay; Serge Menardi; Guy J. Monnet

The Very Large Telescope Interferometer (VLTI) on Cerro Paranal (2635 m) in Northern Chile reached a major milestone in September 2003 when the mid infrared instrument MIDI was offered for scientific observations to the community. This was only nine months after MIDI had recorded first fringes. In the meantime, the near infrared instrument AMBER saw first fringes in March 2004, and it is planned to offer AMBER in September 2004. The large number of subsystems that have been installed in the last two years - amongst them adaptive optics for the 8-m Unit Telescopes (UT), the first 1.8-m Auxiliary Telescope (AT), the fringe tracker FINITO and three more Delay Lines for a total of six, only to name the major ones - will be described in this article. We will also discuss the next steps of the VLTI mainly concerned with the dual feed system PRIMA and we will give an outlook to possible future extensions.


ieee aerospace conference | 2012

An ontology for State Analysis: Formalizing the mapping to SysML

David A. Wagner; Matthew B. Bennett; Robert Karban; Nicolas Rouquette; Steven Jenkins; Michel D. Ingham

State Analysis is a methodology developed over the last decade for architecting, designing and documenting complex control systems. Although it was originally conceived for designing robotic spacecraft, recent applications include the design of control systems for large ground-based telescopes. The European Southern Observatory (ESO) began a project to design the European Extremely Large Telescope (E-ELT), which will require coordinated control of over a thousand articulated mirror segments. The designers are using State Analysis as a methodology and the Systems Modeling Language (SysML) as a modeling and documentation language in this task. To effectively apply the State Analysis methodology in this context it became necessary to provide ontological definitions of the concepts and relations in State Analysis and greater flexibility through a mapping of State Analysis into a practical extension of SysML. The ontology provides the formal basis for verifying compliance with State Analysis semantics including architectural constraints. The SysML extension provides the practical basis for applying the State Analysis methodology with SysML tools. This paper will discuss the method used to develop these formalisms (the ontology), the formalisms themselves, the mapping to SysML and approach to using these formalisms to specify a control system and enforce architectural constraints in a SysML model.


Proceedings of SPIE | 2006

THE ACTIVE PHASING EXPERIMENT PART I: CONCEPT AND OBJECTIVES

Natalia Yaitskova; F. Gonte; Frederic Derie; Lothar Noethe; Isabelle Surdej; Robert Karban; Kjetil Dohlen; M. Langlois; Simone Esposito; Enrico Pinna; Marcos Reyes; Lusma Montoya; David Terrett

In a framework of ELT design study our group is building an Active Phasing Experiment (APE), the main goals of which is to demonstrate the non-adaptive wavefront control scheme and technology for Extremely Large Telescope (ELT). The experiment includes verification and test of different phasing sensors and integration of a phasing wavefront sensor into a global scheme of segmented telescope active control. After a sufficient number of tests in the laboratory APE will be mounted and tested on sky at a Nasmyth focus of a VLT unit telescope. The paper presents APE as a demonstrator of particular aspects of ELT and provides a general understanding concerning the strategy of segmented mirrors active control.


Proceedings of SPIE | 2004

APE: a breadboard to evaluate new phasing technologies for a future European Giant Optical Telescope

F. Gonte; Natalia Yaitskova; Philippe Dierickx; Robert Karban; Alain Courteville; Achim Schumacher; Nicholas Devaney; Simone Esposito; Kjetil Dohlen; Marc Ferrari; Luzma Montoya

The point spread function of a segmented aperture is seriously affected by the misalignment of the segments. Stringent requirements apply to position sensors and their calibration. The Active Phasing Experiment (APE) will be a technical instrument aimed at testing possible phasing techniques for a European Giant Optical Telescope (EGOT) in a representative environment. It will also integrate simultaneous control of segmented and monolithic, active surfaces. A mirror composed of 61 hexagonal segments is conjugated to the primary mirror of the VLT. Each segment can be moved in piston, tip and tilt and can be controlled in open or closed loop. Three new types of Phasing Wave Front Sensors dedicated to the measurement of segmentation errors will be tested, evaluated and compared: a modified Mach-Zehnder sensor developed by the LAM and ESO, a Pyramid Sensor developed by Arcetri, and a Curvature Sensor developed by IAC. A reference metrology developed by FOGALE will be added to measure directly the deformation of the segmented mirror and check the efficiency of the tested wavefront sensors. This metrology will be based on a synthetic wavelength instantaneous phase stepping method. This experiment will first run in the laboratory with point-like polychromatic sources and a turbulence generator. In a second step, it will be mounted at a Nasmyth focus of a VLT unit telescope. These activities are included in a proposal to the European Commission for funding within Framework Program 6.


Proceedings of SPIE | 2008

Exploring model based engineering for large telescopes: getting started with descriptive models

Robert Karban; Michele Zamparelli; Bertrand Bauvir; Bertrand Koehler; Lothar Noethe; A. Balestra

Large telescopes pose a continuous challenge to systems engineering due to their complexity in terms of requirements, operational modes, long duty lifetime, interfaces and number of components. A multitude of decisions must be taken throughout the life cycle of a new system, and a prime means of coping with complexity and uncertainty is using models as one decision aid. The potential of descriptive models based on the OMG Systems Modeling Language (OMG SysMLTM) is examined in different areas: building a comprehensive model serves as the basis for subsequent activities of soliciting and review for requirements, analysis and design alike. Furthermore a model is an effective communication instrument against misinterpretation pitfalls which are typical of cross disciplinary activities when using natural language only or free-format diagrams. Modeling the essential characteristics of the system, like interfaces, system structure and its behavior, are important system level issues which are addressed. Also shown is how to use a model as an analysis tool to describe the relationships among disturbances, opto-mechanical effects and control decisions and to refine the control use cases. Considerations on the scalability of the model structure and organization, its impact on the development process, the relation to document-centric structures, style and usage guidelines and the required tool chain are presented.


Proceedings of SPIE | 2008

Design and performances of the Shack-Hartmann sensor within the Active Phasing Experiment

Ruben Mazzoleni; F. Gonte; Isabelle Surdej; C. Araujo; Roland Brast; Frederic Derie; Philippe Duhoux; Christophe Dupuy; Christoph Frank; Robert Karban; Lothar Noethe; N. Yaitskova

The Shack-Hartmann Phasing Sensor (SHAPS) has been integrated in the Active Phasing Experiment (APE) at ESO. It is currently under test in the laboratory. The tests on sky are foreseen for the end of 2008, when APE will be mounted at the Nasmyth focus of one of the VLT unit telescopes. SHAPS is based on the Shack-Hartmann principle: the lenslet array is located in a plane which is optically conjugated to the Active Segmented Mirror (ASM) of APE and is composed of two types of microlenses, circular and cylindrical, which give information about the wavefront slope and the piston steps, respectively. This proceeding contains a description of SHAPS and of the algorithms implemented for the wavefront reconstruction and for the phasing. The preliminary results obtained during the laboratory tests are discussed and compared with the theoretical predictions. The performances of SHAPS at the VLT and at the European Extremely Large Telescope (E-ELT) are estimated.


AIAA Infotech @ Aerospace | 2015

Ontology and modeling patterns for state-based behavior representation

Jean-Francois Castet; Matthew L. Rozek; Michel D. Ingham; Nicolas Rouquette; Seung H. Chung; Aleksandr A. Kerzhner; Kenneth Donahue; J. Steven Jenkins; David A. Wagner; Daniel L. Dvorak; Robert Karban

This paper provides an approach to capture state-based behavior of elements, that is, the specification of their state evolution in time, and the interactions amongst them. Elements can be components (e.g., sensors, actuators) or environments, and are characterized by state variables that vary with time. The behaviors of these elements, as well as interactions among them are represented through constraints on state variables. This paper discusses the concepts and relationships introduced in this behavior ontology, and the modeling patterns associated with it. Two example cases are provided to illustrate their usage, as well as to demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight electrical model and a more complex spacecraft model involving instruments, power and data behaviors. Finally, an implementation in a SysML profile is provided.


Proceedings of SPIE | 2004

Applying VLT software to a new telescope: methods and observations

Malcolm Stewart; Steven M. Beard; Alastair J. Borrowman; David Terrett; Robert Karban; Krister Wirenstrand

The VISTA wide field survey telescope will be operated and maintained from 2006 by ESO at their Cerro Paranal Observatory. To minimise both development costs and operational costs, the telescopes software will reuse software from the VLT wherever feasible. Some software modules will be reused without modification, others will include modifications or enhancements and yet others will be complete rewrites or completely new. This paper examines the methods used in the software development process to integrate existing and new software in a transparent and maintainable manner. On the basis of the work so far performed, some lessons are presented for the reuse of VLT software for a new telescope by an organisation without previous knowledge of VLT software.


Proceedings of SPIE | 2014

Model based systems engineering for astronomical projects

Robert Karban; Luigi Andolfato; Paul Bristow; Gianluca Chiozzi; Michael Esselborn; Marcus Schilling; C. Schmid; Heiko Sommer; Michele Zamparelli

Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)


Proceedings of SPIE | 2008

Workstation software framework

Luigi Andolfato; Robert Karban

The Workstation Software Framework (WSF) is a state machine model driven development toolkit designed to generate event driven applications based on ESO VLT software. State machine models are used to generate executables. The toolkit provides versatile code generation options and it supports Mealy, Moore and hierarchical state machines. Generated code is readable and maintainable since it combines well known design patterns such as the State and the Template patterns. WSF promotes a development process that is based on model reusability through the creation of a catalog of state machine patterns.

Collaboration


Dive into the Robert Karban's collaboration.

Top Co-Authors

Avatar

F. Gonte

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Lothar Noethe

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Philippe Duhoux

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Frederic Derie

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Isabelle Surdej

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Christophe Dupuy

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Luigi Andolfato

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Roland Brast

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

C. Araujo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Christoph Frank

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge