Robert M. Jacobberger
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert M. Jacobberger.
Nano Letters | 2014
Feng Xu; Meng-Yin Wu; Nathaniel S. Safron; Susmit Singha Roy; Robert M. Jacobberger; Dominick J. Bindl; Jung Hun Seo; Tzu-Hsuan Chang; Zhenqiang Ma; Michael S. Arnold
Field-effect transistors (FETs) that are stretchable up to 50% without appreciable degradation in performance are demonstrated. The FETs are based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes (CNTs) as the channel, a flexible ion gel as the dielectric, and buckled metal films as electrodes. The buckling of the CNT film enables the high degree of stretchability while the flexible nature of the ion gel allows it to maintain a high quality interface with the CNTs during stretching. An excellent on/off ratio of >10(4), a field-effect mobility of 10 cm(2) · V(-1) · s(-1), and a low operating voltage of <2 V are achieved over repeated mechanical cycling, with further strain accommodation possible. Deformable FETs are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins.
Nature Communications | 2015
Robert M. Jacobberger; Brian Kiraly; Matthieu Fortin-Deschênes; Pierre L. Levesque; Kyle M. McElhinny; Gerald J. Brady; Richard Rojas Delgado; Susmit Singha Roy; Andrew J. Mannix; Max G. Lagally; Paul G. Evans; P. Desjardins; Richard Martel; Mark C. Hersam; Nathan P. Guisinger; Michael S. Arnold
Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h−1. This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits.
ACS Nano | 2016
Leith Samad; Sage M. Bladow; Qi Ding; Junqiao Zhuo; Robert M. Jacobberger; Michael S. Arnold; Song Jin
The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications.
Nano Letters | 2015
Brian Kiraly; Robert M. Jacobberger; Andrew J. Mannix; Gavin P. Campbell; Michael J. Bedzyk; Michael S. Arnold; Mark C. Hersam; Nathan P. Guisinger
Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110) leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this work, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene-Ge interface.
Small | 2014
Yumin Ye; Dominick J. Bindl; Robert M. Jacobberger; Meng-Yin Wu; Susmit Singha Roy; Michael S. Arnold
Using a novel two-step fabrication scheme, we create highly semiconducting-enriched single-walled carbon nanotube (sSWNT) bulk heterojunctions (BHJs) by first creating highly porous interconnected sSWNT aerogels (sSWNT-AEROs), followed by back-filling the pores with [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM). We demonstrate sSWNT-AERO structures with density as low as 2.5 mg cm(-3), porosity as high as 99.8%, and diameter of sSWNT fibers ≤ 10 nm. Upon spin coating with PC(71)BM, the resulting sSWNT-AERO-PC(71)BM nanocomposites exhibit highly quenched sSWNT photoluminescence, which is attributed to the large interfacial area between the sSWNT and PC(71)BM phases, and an appropriate sSWNT fiber diameter that matches the inter-sSWNT exciton migration length. Employing the sSWNT-AERO-PC(71)BM BHJ structure, we report optimized solar cells with a power conversion efficiency of 1.7%, which is exceptional among polymer-like solar cells in which sSWNTs are designed to replace either the polymer or fullerene component. A fairly balanced photocurrent is achieved with 36% peak external quantum efficiency (EQE) in the visible and 19% peak EQE in the near-infrared where sSWNTs serve as electron donors and photoabsorbers. Our results prove the effectiveness of this new method in controlling the sSWNT morphology in BHJ structures, suggesting a promising route towards highly efficient sSWNT photoabsorbing solar cells.
ACS Nano | 2014
Maksim Grechko; Yumin Ye; Randy D. Mehlenbacher; Thomas J. McDonough; Meng-Yin Wu; Robert M. Jacobberger; Michael S. Arnold; Martin T. Zanni
We utilize femtosecond transient absorption spectroscopy to study dynamics of photoexcitation migration in films of semiconducting single-wall carbon nanotubes. Films of nanotubes in close contact enable energy migration such as needed in photovoltaic and electroluminescent devices. Two types of films composed of nanotube fibers are utilized in this study: densely packed and very porous. By comparing exciton kinetics in these films, we characterize excitation transfer between carbon nanotubes inside fibers versus between fibers. We find that intrafiber transfer takes place in both types of films, whereas interfiber transfer is greatly suppressed in the porous one. Using films with different nanotube composition, we are able to test several models of exciton transfer. The data are inconsistent with models that rely on through-space interfiber energy transfer. A model that fits the experimental results postulates that interfiber transfer occurs only at intersections between fibers, and the excitons reach the intersections by diffusing along the long-axis of the tubes. We find that time constants for the inter- and intrafiber transfers are 0.2-0.4 and 7 ps, respectively. In total, hopping between fibers accounts for about 60% of all exciton downhill transfer prior to 4 ps in the dense film. The results are discussed with regards to transmission electron micrographs of the films. This study provides a rigorous analysis of the photophysics in this new class of promising materials for photovoltaics and other technologies.
Journal of Applied Physics | 2013
Meng-Yin Wu; Robert M. Jacobberger; Michael S. Arnold
Semiconducting carbon nanotubes are attractive materials for harvesting light in photovoltaic solar cells and photodetectors. A crucial aspect of designing efficient photovoltaic devices using nanotubes is minimizing the length scale for the absorption of light (LA) and maximizing the length scale across which excitons diffuse (LD) in fibers and films of these materials. In order to facilitate the optimization of these parameters, here we model how LA and LD are affected by nanotube bandgap polydispersity, inter-nanotube coupling, film disorder, orientation, and defects. Our models are guided by previous experimental measurements of optical absorption spectra and exciton inter-nanotube transfer rates made on isolated and bundled nanotubes in conjunction with kinetic Monte Carlo simulations. Our results provide criteria for materials selection and the design of efficient carbon nanotube-based light harvesting devices, in various architectures.
Applied Physics Letters | 2015
Meng-Yin Wu; Juan Zhao; Feng Xu; Tzu-Hsuan Chang; Robert M. Jacobberger; Zhenqiang Ma; Michael S. Arnold
Deformable field-effect transistors (FETs) are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins. We previously demonstrated stretchable FETs based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes as the channel, buckled metal films as electrodes, and unbuckled flexible ion gel films as the dielectric. The FETs were stretchable up to 50% without appreciable degradation in performance before failure of the ion gel film. Here, we show that by buckling the ion gel, the integrity and performance of the nanotube FETs are extended to nearly 90% elongation, limited by the stretchability of the elastomer substrate. The FETs maintain an on/off ratio of >104 and a field-effect mobility of 5 cm2 V−1 s−1 under elongation and demonstrate invariant performance over 1000 stretching cycles.
Applied Physics Letters | 2016
Brian Kiraly; Andrew J. Mannix; Robert M. Jacobberger; Brandon Fisher; Michael S. Arnold; Mark C. Hersam; Nathan P. Guisinger
Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward GNR devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ∼10 nm via atmospheric pressure chemical vapor deposition. In this work, the growth of GNRs on Ge(001) is extended to ultra-high vacuum conditions, resulting in the realization of GNRs with widths narrower than 5 nm. Armchair graphene nanoribbons oriented along Ge 〈110〉 surface directions are achieved with excellent width control and relatively large bandgaps. The bandgap magnitude and electronic uniformity of these sub-5 nm GNRs are well-suited for emerging na...
ACS Nano | 2017
Robert M. Jacobberger; Michael S. Arnold
The growth of graphene on Ge(001) via chemical vapor deposition can be highly anisotropic, affording the facile synthesis of crystallographically controlled, narrow, long, oriented nanoribbons of graphene that are semiconducting, whereas unpatterned continuous graphene is semimetallic. This bottom-up growth overcomes long-standing challenges that have limited top-down ribbon fabrication (e.g., inadequate resolution and disordered edges) and yields ribbons with long segments of smooth armchair edges. The charge transport characteristics of sub-10 nm ribbons synthesized by this technique (which are expected to have band gaps sufficiently large for semiconductor electronics applications) have not yet been characterized. Here, we show that sub-10 nm nanoribbons grown on Ge(001) can simultaneously achieve a high on/off conductance ratio of 2 × 104 and a high on-state conductance of 5 μS in field-effect transistors, favorably comparing to or exceeding the performance of nanoribbons fabricated by other methods. These promising results demonstrate that the direct synthesis of nanoribbons on Ge(001) could provide a scalable pathway toward the practical realization of high-performance semiconducting graphene electronics, provided that the width uniformity and positioning of the nanoribbons are improved.