Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Ouvrier is active.

Publication


Featured researches published by Robert Ouvrier.


Nature Genetics | 2001

Mutations in the gene encoding immunoglobulin μ-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1

Katja Grohmann; Markus Schuelke; Alexander Diers; Katrin Hoffmann; Barbara Lucke; Coleen Adams; Enrico Bertini; Hajnalka Leonhardt-Horti; Francesco Muntoni; Robert Ouvrier; Arne Pfeufer; Rainer Rossi; Lionel Van Maldergem; Jo M. Wilmshurst; Thomas F. Wienker; Michael Sendtner; Sabine Rudnik-Schöneborn; Klaus Zerres; Christoph Hübner

Classic spinal muscular atrophy (SMA) is caused by mutations in the telomeric copy of SMN1. Its product is involved in various cellular processes, including cytoplasmic assembly of spliceosomal small nuclear ribonucleoproteins, pre-mRNA processing and activation of transcription. Spinal muscular atrophy with respiratory distress (SMARD) is clinically and genetically distinct from SMA. Here we demonstrate that SMARD type 1 (SMARD1) results from mutations in the gene encoding immunoglobulin μ-binding protein 2 (IGHMBP2; on chromosome 11q13.2–q13.4). In six SMARD1 families, we detected three recessive missense mutations (exons 5, 11 and 12), two nonsense mutations (exons 2 and 5), one frameshift deletion (exon 5) and one splice donor-site mutation (intron 13). Mutations in mouse Ighmbp2 (ref. 14) have been shown to be responsible for spinal muscular atrophy in the neuromuscular degeneration (nmd) mouse, whose phenotype resembles the SMARD1 phenotype. Like the SMN1 product, IGHMBP2 colocalizes with the RNA-processing machinery in both the cytoplasm and the nucleus. Our results show that IGHMBP2 is the second gene found to be defective in spinal muscular atrophy, and indicate that IGHMBP2 and SMN share common functions important for motor neuron maintenance and integrity in mammals.


Nature Genetics | 2013

GRIN2A mutations cause epilepsy-aphasia spectrum disorders

Gemma L. Carvill; Brigid M. Regan; Simone C. Yendle; Brian J. O'Roak; Natalia Lozovaya; Nadine Bruneau; Nail Burnashev; Adiba Khan; Joseph Cook; Eileen Geraghty; Lynette G. Sadleir; Samantha J. Turner; Meng Han Tsai; Richard Webster; Robert Ouvrier; John A. Damiano; Samuel F. Berkovic; Jay Shendure; Michael S. Hildebrand; Pierre Szepetowski; Ingrid E. Scheffer; Mefford Hc

Epilepsy-aphasia syndromes (EAS) are a group of rare, severe epileptic encephalopathies of unknown etiology with a characteristic electroencephalogram (EEG) pattern and developmental regression particularly affecting language. Rare pathogenic deletions that include GRIN2A have been implicated in neurodevelopmental disorders. We sought to delineate the pathogenic role of GRIN2A in 519 probands with epileptic encephalopathies with diverse epilepsy syndromes. We identified four probands with GRIN2A variants that segregated with the disorder in their families. Notably, all four families presented with EAS, accounting for 9% of epilepsy-aphasia cases. We did not detect pathogenic variants in GRIN2A in other epileptic encephalopathies (n = 475) nor in probands with benign childhood epilepsy with centrotemporal spikes (n = 81). We report the first monogenic cause, to our knowledge, for EAS. GRIN2A mutations are restricted to this group of cases, which has important ramifications for diagnostic testing and treatment and provides new insights into the pathogenesis of this debilitating group of conditions.


Annals of Neurology | 2004

Actin Mutations Are One Cause of Congenital Fibre Type Disproportion

Nigel G. Laing; Nigel F. Clarke; Danielle E. Dye; Khema Liyanage; K.R. Walker; Yasuaki Kobayashi; Shuichi Shimakawa; Tohru Hagiwara; Robert Ouvrier; John C. Sparrow; Ichizo Nishino; Kathryn N. North; Ikuya Nonaka

We report three heterozygous missense mutations of the skeletal muscle alpha actin gene (ACTA1) in three unrelated cases of congenital fiber type disproportion (CFTD) from Japan and Australia. This represents the first genetic cause of CFTD to be identified and confirms that CFTD is genetically heterogeneous. The three mutations we have identified Leucine221Proline, Aspartate292Valine, and Proline332Serine are novel. They have not been found previously in any cases of nemaline, actin, intranuclear rod, or rod‐core myopathy caused by mutations in ACTA1. It remains unclear why these mutations cause type 1 fiber hypotrophy but no nemaline bodies. The three mutations all lie on one face of the actin monomer on the surface swept by tropomyosin during muscle activity, which may suggest a common pathological mechanism. All three CFTD cases with ACTA1 mutations had severe congenital weakness and respiratory failure without ophthalmoplegia. There were no clinical features specific to CFTD cases with ACTA1 mutations, but the presence of normal eye movements in a severe CFTD patient may be an important clue for the presence of a mutation in ACTA1. Ann Neurol 2004


Annals of Neurology | 2003

Infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1)

Katja Grohmann; Raymonda Varon; Piroschka Stolz; Markus Schuelke; Catrin Janetzki; Enrico Bertini; Kate Bushby; Francesco Muntoni; Robert Ouvrier; Lionel Van Maldergem; Nathalie Goemans; Hanns Lochmüller; Stephan Eichholz; Coleen Adams; Friedrich Bosch; Padraic J. Grattan-Smith; Carmen Navarro; Heidemarie Neitzel; Tilman Polster; Haluk Topaloglu; Christina Steglich; Ulf P. Guenther; Klaus Zerres; Sabine Rudnik-Schöneborn; Christoph Hübner

Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is the second anterior horn cell disease in infants in which the genetic defect has been defined. SMARD1 results from mutations in the gene encoding the immunoglobulin μ‐binding protein 2 (IGHMBP2) on chromosome 11q13. Our aim was to review the clinical features of 29 infants affected with SMARD1 and report on 26 novel IGHMBP2 mutations. Intrauterine growth retardation, weak cry, and foot deformities were the earliest symptoms of SMARD1. Most patients presented at the age of 1 to 6 months with respiratory distress due to diaphragmatic paralysis and progressive muscle weakness with predominantly distal lower limb muscle involvement. Sensory and autonomic nerves are also affected. Because of the poor prognosis, there is a demand for prenatal diagnosis, and clear diagnostic criteria for infantile SMARD1 are needed. The diagnosis of SMARD1 should be considered in infants with non‐5q spinal muscular atrophy, neuropathy, and muscle weakness and/or respiratory distress of unclear cause. Furthermore, consanguineous parents of a child with sudden infant death syndrome should be examined for IGHMBP2 mutations.


Journal of Medical Genetics | 2001

The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review.

Kristi J. Jones; Graeme Morgan; Heather M. Johnston; Vivienne Tobias; Robert Ouvrier; Ian Wilkinson; Kathryn N. North

Initial reports of patients with laminin α2 chain (merosin) deficiency had a relatively homogeneous phenotype, with classical congenital muscular dystrophy (CMD) characterised by severe muscle weakness, inability to achieve independent ambulation, markedly raised creatine kinase, and characteristic white matter hypodensity on cerebral magnetic resonance imaging. We report a series of five patients with laminin α2 deficiency, only one of whom has this severe classical CMD phenotype, and review published reports to characterise the expanded phenotype of laminin α2 deficiency, as illustrated by this case series. While classical congenital muscular dystrophy with white matter abnormality is the commonest phenotype associated with laminin α2 deficiency, 12% of reported cases have later onset, slowly progressive weakness more accurately designated limb-girdle muscular dystrophy. In addition, the following clinical features are reported with increased frequency: mental retardation (∼6%), seizures (∼8%), subclinical cardiac involvement (3-35%), and neuronal migration defects (4%). At least 25% of patients achieve independent ambulation. Notably, three patients with laminin α2 deficiency were asymptomatic, 10 patients had normal MRI (four withLAMA2 mutations reported), and between 10-20% of cases had maximum recorded creatine kinase of less than 1000 U/l. LAMA2 mutations have been identified in 25% of cases. Sixty eight percent of these have the classical congenital muscular dystrophy, but this figure is likely to be affected by ascertainment bias. We conclude that all dystrophic muscle biopsies, regardless of clinical phenotype, should be studied with antibodies to laminin α2. In addition, the use of multiple antibodies to different regions of laminin α2 may increase the diagnostic yield and provide some correlation with severity of clinical phenotype.


Lancet Neurology | 2009

Ascorbic acid for Charcot-Marie-Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial.

Joshua Burns; Robert Ouvrier; Eppie M. Yiu; Pathma D. Joseph; Andrew J. Kornberg; Michael Fahey; Monique M. Ryan

BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited nerve disorder. CMT1A is characterised by peripheral nerve demyelination, weakness, and impaired motor function and is caused by the duplication of PMP22, the gene that encodes peripheral myelin protein 22. High-dose ascorbic acid has been shown to have remyelinating potential and to correct the phenotype of a transgenic mouse model of CMT1A by decreasing expression of PMP22. We tested the efficacy and safety of ascorbic acid supplementation in children with CMT1A. METHODS This 12-month, randomised, double-blind, placebo-controlled trial undertaken between June, 2007, and December, 2008, assessed high-dose oral ascorbic acid (about 30 mg/kg/day) in 81 children with CMT1A (2-16 years). Randomisation was done on a 1:1 ratio by a computer-generated algorithm. All investigators and participants were blinded to treatment allocation with the exception of the trial pharmacist. The primary efficacy outcome was median nerve motor conduction velocity (m/s) at 12 months. Secondary outcomes were foot and hand strength, motor function, walking ability, and quality of life. Compliance was measured by plasma ascorbic acid concentration, pill count, and medication diary entries. Analysis was by intention to treat. This trial is registered with the Australian New Zealand Clinical Trials Registry, Number 12606000481572. FINDINGS 81 children were randomly assigned to receive high-dose ascorbic acid (n=42) or placebo (n=39). 80 children completed 12 months of treatment. The ascorbic acid group had a small, non-significant increase in median nerve motor conduction velocity compared with the placebo group (adjusted mean difference 1.7 m/s, 95% CI -0.1 to 3.4; p=0.06). There was no measurable effect of ascorbic acid on neurophysiological, strength, function, or quality of life outcomes. Two children in the ascorbic acid group and four children in the placebo group reported gastrointestinal symptoms. There were no serious adverse events. INTERPRETATION 12 months of treatment with high-dose ascorbic acid was safe and well tolerated but none of the expected efficacy endpoints were reached.


American Journal of Human Genetics | 2007

Peripheral Nerve Demyelination Caused by a Mutant Rho GTPase Guanine Nucleotide Exchange Factor, Frabin/FGD4

Claudia Stendel; Andreas Roos; Tine Deconinck; Jorge A. Pereira; François Castagner; Axel Niemann; Janbernd Kirschner; Rudolf Korinthenberg; Uwe-Peter Ketelsen; Esra Battaloglu; Yesim Parman; Garth A. Nicholson; Robert Ouvrier; Jürgen Seeger; Joachim Weis; Alexander Krüttgen; Sabine Rudnik-Schöneborn; Carsten Bergmann; Ueli Suter; Klaus Zerres; Vincent Timmerman; João B. Relvas; Jan Senderek

GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system.


Journal of the American Podiatric Medical Association | 2006

Effective orthotic therapy for the painful cavus foot : a randomized controlled trial

Joshua Burns; Jack Crosbie; Robert Ouvrier; Adrienne Hunt

Patients with a cavus or high-arched foot frequently experience foot pain, which can lead to significant limitation in function. Custom foot orthoses are widely prescribed to treat cavus foot pain. However, no clear guidelines for their construction exist, and there is limited evidence of their efficacy. In a randomized, single-blind, sham-controlled trial, the effect of custom foot orthoses on foot pain, function, quality of life, and plantar pressure loading in people with a cavus foot type was investigated. One hundred fifty-four participants with chronic musculoskeletal foot pain and bilateral cavus feet were randomly assigned to a treatment group receiving custom foot orthoses (n = 75) or to a control group receiving simple sham insoles (n = 79). At 3 months, 99% of the participants provided follow-up data using the Foot Health Status Questionnaire. Foot pain scores improved more with custom foot orthoses than with the control (difference, 8.3 points; 95% confidence interval [CI], 1.2 to 15.3 points; P = .022). Function scores also improved more with custom foot orthoses than with the control (difference, 9.5 points; 95% CI, 2.9 to 16.1 points; P = .005). Quality-of-life data favored custom foot orthoses, although differences reached statistical significance only for physical functioning (difference, 7.0 points; 95% CI, 1.9 to 12.1 points; P = .008). Plantar pressure improved considerably more with custom foot orthoses than with the control for all regions of the foot (difference, ‐3.0 N . s/cm 2 ; 95% CI, ‐3.7 to ‐2.4 N . s/cm 2 ; P < .001). In conclusion, custom foot orthoses are more effective than a control for the treatment of cavus foot pain and its associated limitation in function. (J Am Podiatr Med Assoc 96(3): 205-211, 2006)


Brain | 2014

Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

A. Reghan Foley; Manoj P. Menezes; Amelie Pandraud; Michael Gonzalez; Ahmad Al-Odaib; Alexander J. Abrams; Kumiko Sugano; Atsushi Yonezawa; Adnan Y. Manzur; Joshua Burns; Imelda Hughes; B. Gary McCullagh; Heinz Jungbluth; Ming Lim; Jean-Pierre Lin; André Mégarbané; J. Andoni Urtizberea; Ayaz H. Shah; Jayne Antony; Richard Webster; Alexander Broomfield; Joanne Ng; Ann Agnes Mathew; James J. O’Byrne; Eva Forman; M. Scoto; Manish Prasad; Katherine O’Brien; S. E. Olpin; Marcus Oppenheim

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.


JAMA Neurology | 2009

Genotype-Phenotype Correlations in Charcot-Marie-Tooth Disease Type 2 Caused by Mitofusin 2 Mutations

Judith Calvo; Benoît Funalot; Robert Ouvrier; Leila Lazaro; Annick Toutain; Philippe De Mas; Pierre Bouche; Brigitte Gilbert-Dussardier; Marie-Christine Arne-Bes; Jean-Pierre Carrière; Hubert Journel; Marie-Christine Minot-Myhie; Claire Guillou; Karima Ghorab; Laurent Magy; Franck Sturtz; Jean-Michel Vallat; Corinne Magdelaine

BACKGROUND Mutations in the gene encoding mitofusin 2 (MFN2) cause Charcot-Marie-Tooth disease type 2 (CMT2), with heterogeneity concerning severity and associated clinical features. OBJECTIVE To describe MFN2 mutations and associated phenotypes in patients with hereditary motor and sensory neuropathy (HMSN). DESIGN Direct sequencing of the MFN2 gene and clinical investigations of patients with MFN2 mutations. SETTING Molecular genetics laboratory of a university hospital and the Limoges National Referral Center for Rare Peripheral Neuropathies. PATIENTS One hundred fifty index patients with HMSN and a median motor nerve conduction velocity of 25 m/s or greater and without mutations in the genes encoding connexin 32 and myelin protein zero. MAIN OUTCOME MEASURES Results of genetic analyses and phenotypic observations. RESULTS Twenty different missense mutations were identified in 20 index patients. Mutation frequency was 19 of 107 (17.8%) in patients with CMT2 and 1 of 43 (2.3%) in patients with a median motor nerve conduction velocity less than 38 m/s. Four patients had proven de novo mutations, 8 families had autosomal dominant inheritance, and 3 had autosomal recessive inheritance. The remaining 5 patients were sporadic cases with heterozygous mutations. Phenotypes varied from mild forms to early-onset severe forms. Additional features were encountered in 8 patients (32%). Six patients underwent sural nerve biopsy: electronic microscopy showed prominent mitochondrial abnormalities on longitudinal sections. CONCLUSIONS MFN2 mutations are a frequent cause of CMT2, with variable severity and either dominant or recessive inheritance. MFN2 gene testing must be a first-line analysis in axonal HMSN irrespective of the mode of inheritance or the severity of the peripheral neuropathy.

Collaboration


Dive into the Robert Ouvrier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monique M. Ryan

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Crosbie

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eppie M. Yiu

Royal Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge