Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert S. Harris is active.

Publication


Featured researches published by Robert S. Harris.


Nature | 2011

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger

‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Nature | 2010

Complete Khoisan and Bantu genomes from southern Africa

Stephan C. Schuster; Webb Miller; Aakrosh Ratan; Lynn P. Tomsho; Belinda Giardine; Lindsay R. Kasson; Robert S. Harris; Desiree C. Petersen; Fangqing Zhao; Ji Qi; Can Alkan; Jeffrey M. Kidd; Yazhou Sun; Daniela I. Drautz; Pascal Bouffard; Donna M. Muzny; Jeffrey G. Reid; Lynne V. Nazareth; Qingyu Wang; Richard Burhans; Cathy Riemer; Nicola E. Wittekindt; Priya Moorjani; Elizabeth A. Tindall; Charles G. Danko; Wee Siang Teo; Anne M. Buboltz; Zhenhai Zhang; Qianyi Ma; Arno Oosthuysen

The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial and small sets of nuclear markers have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans. However, until now, fully sequenced human genomes have been limited to recently diverged populations. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.


Nucleic Acids Research | 2013

Integrative annotation of chromatin elements from ENCODE data

Michael M. Hoffman; Jason Ernst; Steven P. Wilder; Anshul Kundaje; Robert S. Harris; Max Libbrecht; Belinda Giardine; Paul M. Ellenbogen; Jeff A. Bilmes; Ewan Birney; Ross C. Hardison; Ian Dunham; Manolis Kellis; William Stafford Noble

The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape.


Genome Research | 2014

Alignathon: A competitive assessment of whole genome alignment methods

Dent Earl; Ngan Nguyen; Glenn Hickey; Robert S. Harris; Stephen Fitzgerald; Kathryn Beal; Seledtsov I; Molodtsov; Brian J. Raney; Hiram Clawson; Jaebum Kim; Carsten Kemena; Jia-Ming Chang; Ionas Erb; Poliakov A; Minmei Hou; Javier Herrero; William Kent; Solovyev; Aaron E. Darling; Jian Ma; Cedric Notredame; Michael Brudno; Inna Dubchak; David Haussler; Benedict Paten

Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then assessments were performed collectively after all the submissions were received. Three data sets were used: Two were simulated and based on primate and mammalian phylogenies, and one was comprised of 20 real fly genomes. In total, 35 submissions were assessed, submitted by 10 teams using 12 different alignment pipelines. We found agreement between independent simulation-based and statistical assessments, indicating that there are substantial accuracy differences between contemporary alignment tools. We saw considerable differences in the alignment quality of differently annotated regions and found that few tools aligned the duplications analyzed. We found that many tools worked well at shorter evolutionary distances, but fewer performed competitively at longer distances. We provide all data sets, submissions, and assessment programs for further study and provide, as a resource for future benchmarking, a convenient repository of code and data for reproducing the simulation assessments.


Nucleic Acids Research | 2009

Primary sequence and epigenetic determinants of in vivo occupancy of genomic DNA by GATA1

Ying Zhang; Weisheng Wu; Yong Cheng; David C. King; Robert S. Harris; James Taylor; Francesca Chiaromonte; Ross C. Hardison

DNA sequence motifs and epigenetic modifications contribute to specific binding by a transcription factor, but the extent to which each feature determines occupancy in vivo is poorly understood. We addressed this question in erythroid cells by identifying DNA segments occupied by GATA1 and measuring the level of trimethylation of histone H3 lysine 27 (H3K27me3) and monomethylation of H3 lysine 4 (H3K4me1) along a 66 Mb region of mouse chromosome 7. While 91% of the GATA1-occupied segments contain the consensus binding-site motif WGATAR, only ∼0.7% of DNA segments with such a motif are occupied. Using a discriminative motif enumeration method, we identified additional motifs predictive of occupancy given the presence of WGATAR. The specific motif variant AGATAA and occurrence of multiple WGATAR motifs are both strong discriminators. Combining motifs to pair a WGATAR motif with a binding site motif for GATA1, EKLF or SP1 improves discriminative power. Epigenetic modifications are also strong determinants, with the factor-bound segments highly enriched for H3K4me1 and depleted of H3K27me3. Combining primary sequence and epigenetic determinants captures 52% of the GATA1-occupied DNA segments and substantially increases the specificity, to one out of seven segments with the required motif combination and epigenetic signals being bound.


BMC Bioinformatics | 2014

HECTOR: a parallel multistage homopolymer spectrum based error corrector for 454 sequencing data

Adrianto Wirawan; Robert S. Harris; Yongchao Liu; Bertil Schmidt; Jan Schröder

BackgroundCurrent-generation sequencing technologies are able to produce low-cost, high-throughput reads. However, the produced reads are imperfect and may contain various sequencing errors. Although many error correction methods have been developed in recent years, none explicitly targets homopolymer-length errors in the 454 sequencing reads.ResultsWe present HECTOR, a parallel multistage homopolymer spectrum based error corrector for 454 sequencing data. In this algorithm, for the first time we have investigated a novel homopolymer spectrum based approach to handle homopolymer insertions or deletions, which are the dominant sequencing errors in 454 pyrosequencing reads. We have evaluated the performance of HECTOR, in terms of correction quality, runtime and parallel scalability, using both simulated and real pyrosequencing datasets. This performance has been further compared to that of Coral, a state-of-the-art error corrector which is based on multiple sequence alignment and Acacia, a recently published error corrector for amplicon pyrosequences. Our evaluations reveal that HECTOR demonstrates comparable correction quality to Coral, but runs 3.7× faster on average. In addition, HECTOR performs well even when the coverage of the dataset is low.ConclusionOur homopolymer spectrum based approach is theoretically capable of processing arbitrary-length homopolymer-length errors, with a linear time complexity. HECTOR employs a multi-threaded design based on a master-slave computing model. Our experimental results show that HECTOR is a practical 454 pyrosequencing read error corrector which is competitive in terms of both correction quality and speed. The source code and all simulated data are available at: http://hector454.sourceforge.net.


Bioinformatics | 2007

HomologMiner: looking for homologous genomic groups in whole genomes

Minmei Hou; Piotr Berman; Chih-Hao Hsu; Robert S. Harris

MOTIVATION Complex genomes contain numerous repeated sequences, and genomic duplication is believed to be a main evolutionary mechanism to obtain new functions. Several tools are available for de novo repeat sequence identification, and many approaches exist for clustering homologous protein sequences. We present an efficient new approach to identify and cluster homologous DNA sequences with high accuracy at the level of whole genomes, excluding low-complexity repeats, tandem repeats and annotated interspersed repeats. We also determine the boundaries of each group member so that it closely represents a biological unit, e.g. a complete gene, or a partial gene coding a protein domain. RESULTS We developed a program called HomologMiner to identify homologous groups applicable to genome sequences that have been properly marked for low-complexity repeats and annotated interspersed repeats. We applied it to the whole genomes of human (hg17), macaque (rheMac2) and mouse (mm8). Groups obtained include gene families (e.g. olfactory receptor gene family, zinc finger families), unannotated interspersed repeats and additional homologous groups that resulted from recent segmental duplications. Our program incorporates several new methods: a new abstract definition of consistent duplicate units, a new criterion to remove moderately frequent tandem repeats, and new algorithmic techniques. We also provide preliminary analysis of the output on the three genomes mentioned above, and show several applications including identifying boundaries of tandem gene clusters and novel interspersed repeat families. AVAILABILITY All programs and datasets are downloadable from www.bx.psu.edu/miller_lab.


Bioinformatics | 2018

RecoverY: k-mer-based read classification for Y-chromosome-specific sequencing and assembly

Samarth Rangavittal; Robert S. Harris; Monika Cechova; Marta Tomaszkiewicz; Rayan Chikhi; Kateryna D. Makova; Paul Medvedev

Motivation The haploid mammalian Y chromosome is usually under-represented in genome assemblies due to high repeat content and low depth due to its haploid nature. One strategy to ameliorate the low coverage of Y sequences is to experimentally enrich Y-specific material before assembly. As the enrichment process is imperfect, algorithms are needed to identify putative Y-specific reads prior to downstream assembly. A strategy that uses k-mer abundances to identify such reads was used to assemble the gorilla Y. However, the strategy required the manual setting of key parameters, a time-consuming process leading to sub-optimal assemblies. Results We develop a method, RecoverY, that selects Y-specific reads by automatically choosing the abundance level at which a k-mer is deemed to originate from the Y. This algorithm uses prior knowledge about the Y chromosome of a related species or known Y transcript sequences. We evaluate RecoverY on both simulated and real data, for human and gorilla, and investigate its robustness to important parameters. We show that RecoverY leads to a vastly superior assembly compared to alternate strategies of filtering the reads or contigs. Compared to the preliminary strategy used by Tomaszkiewicz et al., we achieve a 33% improvement in assembly size and a 20% improvement in the NG50, demonstrating the power of automatic parameter selection. Availability and implementation Our tool RecoverY is freely available at https://github.com/makovalab-psu/RecoverY. Contact [email protected] or [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.


research in computational molecular biology | 2017

AllSome Sequence Bloom Trees

Chen Sun; Robert S. Harris; Rayan Chikhi; Paul Medvedev

The ubiquity of next generation sequencing has transformed the size and nature of many databases, pushing the boundaries of current indexing and searching methods. One particular example is a database of 2,652 human RNA-seq experiments uploaded to the Sequence Read Archive. Recently, Solomon and Kingsford proposed the Sequence Bloom Tree data structure and demonstrated how it can be used to accurately identify SRA samples that have a transcript of interest potentially expressed. In this paper, we propose an improvement called the AllSome Sequence Bloom Tree. Results show that our new data structure significantly improves performance, reducing the tree construction time by 52.7% and query time by 39–85%, with a price of up to 3x memory consumption during queries. Notably, it can query a batch of 198,074 queries in under 8 h (compared to around two days previously) and a whole set of \(k\)-mers from a sequencing experiment (about 27 mil \(k\)-mers) in under 11 min.


bioRxiv | 2018

Non-B DNA affects polymerization speed and error rate in sequencers and living cells

Wilfried M. F. Guiblet; Marzia A. Cremona; Monika Cechova; Robert S. Harris; Iva Kejnovská; Eduard Kejnovsky; Kristin A. Eckert; Francesca Chiaromonte; Kateryna D. Makova

DNA conformation may deviate from the classical B-form in ~13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability. Here we present the first study of DNA polymerization kinetics in the human genome sequenced with Single-Molecule-Real-Time technology. We show that polymerization speed differs between non-B and B-DNA: it decelerates at G-quadruplexes and fluctuates periodically at disease-causing tandem repeats. We demonstrate that non-B DNA affects sequencing errors and human germline (1,000 Genomes Project, human-orangutan divergence, re-sequenced trios) and somatic (The Cancer Genome Atlas) mutations. Thus, non-B DNA has a large impact on genome evolution and human diseases.DNA conformation may deviate from the classical B-form in ~13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability. Here we present the first simultaneous examination of DNA polymerization kinetics and errors in the human genome sequenced with Single-Molecule-Real-Time technology. We show that polymerization speed differs between non-B and B-DNA: it decelerates at G-quadruplexes and fluctuates periodically at disease-causing tandem repeats. Analyzing polymerization kinetics profiles, we predict and validate experimentally non-B DNA formation for a novel motif. We demonstrate that several non-B motifs affect sequencing errors (e.g., G-quadruplexes increase error rates) and that sequencing errors are positively associated with polymerase slowdown. Finally, we show that highly divergent G4 motifs have pronounced polymerization slowdown and high sequencing error rates, suggesting similar mechanisms for sequencing errors and germline mutations.

Collaboration


Dive into the Robert S. Harris's collaboration.

Top Co-Authors

Avatar

Belinda Giardine

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Minmei Hou

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ross C. Hardison

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Webb Miller

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Brian J. Raney

University of California

View shared research outputs
Top Co-Authors

Avatar

David C. King

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

David Haussler

University of California

View shared research outputs
Top Co-Authors

Avatar

Lynne V. Nazareth

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Paul Medvedev

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Rayan Chikhi

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge