Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Schlossman is active.

Publication


Featured researches published by Robert Schlossman.


The New England Journal of Medicine | 2012

Lenalidomide after stem-cell transplantation for multiple myeloma

Philip L. McCarthy; Kouros Owzar; Craig C. Hofmeister; David D. Hurd; Hani Hassoun; Paul G. Richardson; Sergio Giralt; Edward A. Stadtmauer; Daniel J. Weisdorf; Ravi Vij; Jan S. Moreb; Natalie S. Callander; Koen van Besien; Teresa Gentile; Luis Isola; Richard T. Maziarz; Don A. Gabriel; Heather Landau; Thomas G. Martin; Muzaffar H. Qazilbash; Denise Levitan; Brian McClune; Robert Schlossman; Vera Hars; John Postiglione; Chen Jiang; Elizabeth Bennett; Susan Barry; Linda Bressler; Michael Kelly

BACKGROUND Data are lacking on whether lenalidomide maintenance therapy prolongs the time to disease progression after autologous hematopoietic stem-cell transplantation in patients with multiple myeloma. METHODS Between April 2005 and July 2009, we randomly assigned 460 patients who were younger than 71 years of age and had stable disease or a marginal, partial, or complete response 100 days after undergoing stem-cell transplantation to lenalidomide or placebo, which was administered until disease progression. The starting dose of lenalidomide was 10 mg per day (range, 5 to 15). RESULTS The study-drug assignments were unblinded in 2009, when a planned interim analysis showed a significantly longer time to disease progression in the lenalidomide group. At unblinding, 20% of patients who received lenalidomide and 44% of patients who received placebo had progressive disease or had died (P<0.001); of the remaining 128 patients who received placebo and who did not have progressive disease, 86 crossed over to lenalidomide. At a median follow-up of 34 months, 86 of 231 patients who received lenalidomide (37%) and 132 of 229 patients who received placebo (58%) had disease progression or had died. The median time to progression was 46 months in the lenalidomide group and 27 months in the placebo group (P<0.001). A total of 35 patients who received lenalidomide (15%) and 53 patients who received placebo (23%) died (P=0.03). More grade 3 or 4 hematologic adverse events and grade 3 nonhematologic adverse events occurred in patients who received lenalidomide (P<0.001 for both comparisons). Second primary cancers occurred in 18 patients who received lenalidomide (8%) and 6 patients who received placebo (3%). CONCLUSIONS Lenalidomide maintenance therapy, initiated at day 100 after hematopoietic stem-cell transplantation, was associated with more toxicity and second cancers but a significantly longer time to disease progression and significantly improved overall survival among patients with myeloma. (Funded by the National Cancer Institute; ClinicalTrials.gov number, NCT00114101.).


Blood | 2010

Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma.

Paul G. Richardson; Edie Weller; Sagar Lonial; Andrzej J. Jakubowiak; Sundar Jagannath; Noopur Raje; David Avigan; Wanling Xie; Irene M. Ghobrial; Robert Schlossman; Amitabha Mazumder; Nikhil C. Munshi; David H. Vesole; Robin Joyce; Jonathan L. Kaufman; Deborah Doss; Diane Warren; Laura E. Lunde; Sarah Kaster; Carol Delaney; Teru Hideshima; Constantine S. Mitsiades; Robert Knight; Dixie-Lee Esseltine; Kenneth C. Anderson

This phase 1/2 study is the first prospective evaluation of lenalidomide-bortezomib-dexamethasone in front-line myeloma. Patients (N = 66) received 3-week cycles (n = 8) of bortezomib 1.0 or 1.3 mg/m(2) (days 1, 4, 8, 11), lenalidomide 15 to 25 mg (days 1-14), and dexamethasone 40 or 20 mg (days 1, 2, 4, 5, 8, 9, 11, 12). Responding patients proceeded to maintenance or transplantation. Phase 2 dosing was determined to be bortezomib 1.3 mg/m(2), lenalidomide 25 mg, and dexamethasone 20 mg. Most common toxicities included sensory neuropathy (80%) and fatigue (64%), with only 27%/2% and 32%/3% grade 2/3, respectively. In addition, 32% reported neuropathic pain (11%/3%, grade 2/3). Grade 3/4 hematologic toxicities included lymphopenia (14%), neutropenia (9%), and thrombocytopenia (6%). Thrombosis was rare (6% overall), and no treatment-related mortality was observed. Rate of partial response was 100% in both the phase 2 population and overall, with 74% and 67% each achieving very good partial response or better. Twenty-eight patients (42%) proceeded to undergo transplantation. With median follow-up of 21 months, estimated 18-month progression-free and overall survival for the combination treatment with/without transplantation were 75% and 97%, respectively. Lenalidomide-bortezomib-dexamethasone demonstrates favorable tolerability and is highly effective in the treatment of newly diagnosed myeloma. This study is registered at http://clinicaltrials.gov as NCT00378105.


Oncogene | 2002

Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications.

Constantine S. Mitsiades; Nicholas Mitsiades; Vassiliki Poulaki; Robert Schlossman; Masaharu Akiyama; Dharminder Chauhan; Teru Hideshima; Steven P. Treon; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1) promote the proliferation of multiple myeloma (MM) cells and protect them against dexamethasone (Dex)-induced apoptosis. We have previously shown that Apo2 ligand/TNF-Related apoptosis inducing ligand (Apo2L/TRAIL) induces apoptosis of MM cells, including cells either sensitive or resistant to Dex and cytotoxic drugs, and overcomes the growth and survival effect of IL-6; conversely, NF-κB transcriptional activity attenuates their Apo2L/TRAIL-sensitivity. In the current study, we demonstrate that IGF-1 stimulates sustained activation of NF-κB and Akt; induces phosphorylation of the FKHRL-1 Forkhead transcription factor; upregulates a series of intracellular anti-apoptotic proteins including FLIP, survivin, cIAP-2, A1/Bfl-1, and XIAP; and decreases Apo2L/TRAIL-sensitivity of MM cells. In contrast, IL-6 does not cause sustained NF-κB activation, induces less pronounced Akt activation and FKHRL-1 phosphorylation than IGF-1, and increases the expression of only survivin. Forced overexpression of constitutively active Akt in MM-1S cells reduced their sensitivity to Apo2L/TRAIL and to doxorubicin (Doxo). In contrast, the Akt inhibitor IL-6-Hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate induced cell death of both Dex- and Doxo-sensitive and -resistant cells; opposed the protective effect of constitutive Akt activity against Apo2L/TRAIL; and abrogated the NF-κB activation, increase of anti-apoptotic proteins and protection against Apo2L/TRAIL induced by IGF-1. These findings therefore define an important role of the Akt pathway in modulating tumor cell responsiveness to Apo2L/TRAIL, delineate molecular mechanisms for the survival effects of IGF-1, and characterize differential pathophysiologic sequelae of IGF-1 vs IL-6 on MM cells. Importantly, they provide the basis for future clinical trials in MM combining conventional or novel agents with strategies designed to neutralize IGF-1.


Oncogene | 2001

The role of tumor necrosis factor α in the pathophysiology of human multiple myeloma: therapeutic applications

Teru Hideshima; Dharminder Chauhan; Robert Schlossman; Paul G. Richardson; Kenneth C. Anderson

In this study we demonstrate that tumor necrosis factor α (TNFα) triggers only modest proliferation, as well as p44/p42 mitogen-activated protein kinase (MAPK) and NF-κB activation, in MM.1S multiple myeloma (MM) cells. TNFα also activates NF-κB and markedly upregulates (fivefold) secretion of interleukin-6 (IL-6), a myeloma growth and survival factor, in bone marrow stromal cells (BMSCs). TNFα in both a dose and time dependent fashion induced expression of CD11a (LFA-1), CD54 (intercellular adhesion molecule-1, ICAM-1), CD106 (vascular cell adhesion molecule-1, VCAM-1), CD49d (very late activating antigen-4, VLA-4), and/or MUC-1 on MM cell lines; as well as CD106 (VCAM-1) and CD54 (ICAM-1) expression on BMSCs. This resulted in increased (2–4-fold) per cent specific binding of MM cells to BMSCs, with related IL-6 secretion. Importantly, the proteasome inhibitor PS-341 abrogated TNFα-induced NF-κB activation, induction of ICAM-1 or VCAM-1, and increased adhesion of MM cells to BMSCs. Agents which act to inhibit TNFα may therefore abrogate the paracrine growth and survival advantage conferred by MM cell adhesion in the BM microenvironment.


Nature Medicine | 2010

Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity

Douglas W. McMillin; Jake Delmore; Ellen Weisberg; Joseph Negri; D Corey Geer; Steffen Klippel; Nicholas Mitsiades; Robert Schlossman; Nikhil C. Munshi; Andrew L. Kung; James D. Griffin; Paul G. Richardson; Kenneth C. Anderson; Constantine S. Mitsiades

Conventional anticancer drug screening is typically performed in the absence of accessory cells of the tumor microenvironment, which can profoundly alter antitumor drug activity. To address this limitation, we developed the tumor cell–specific in vitro bioluminescence imaging (CS-BLI) assay. Tumor cells (for example, myeloma, leukemia and solid tumors) stably expressing luciferase are cultured with nonmalignant accessory cells (for example, stromal cells) for selective quantification of tumor cell viability, in presence versus absence of stromal cells or drug treatment. CS-BLI is high-throughput scalable and identifies stroma-induced chemoresistance in diverse malignancies, including imatinib resistance in leukemic cells. A stroma-induced signature in tumor cells correlates with adverse clinical prognosis and includes signatures for activated Akt, Ras, NF-κB, HIF-1α, myc, hTERT and IRF4; for biological aggressiveness; and for self-renewal. Unlike conventional screening, CS-BLI can also identify agents with increased activity against tumor cells interacting with stroma. One such compound, reversine, shows more potent activity in an orthotopic model of diffuse myeloma bone lesions than in conventional subcutaneous xenografts. Use of CS-BLI, therefore, enables refined screening of candidate anticancer agents to enrich preclinical pipelines with potential therapeutics that overcome stroma-mediated drug resistance and can act in a synthetic lethal manner in the context of tumor-stroma interactions.


Journal of Immunotherapy | 2001

Tumor Cell Expression of CD59 Is Associated With Resistance to CD20 Serotherapy in Patients With B-Cell Malignancies.

Steven P. Treon; Constantine S. Mitsiades; Nicholas Mitsiades; Gloria Young; Deborah Doss; Robert Schlossman; Kenneth C. Anderson

The anti-CD20 chimeric monoclonal antibody rituximab (Rituxan) is used to treat patients with various B-cell tumors, including patients with plasma cell dyscrasias who have CD20+ disease. Many patients with CD20+ disease have either primary unresponsive disease or progress after initially responding to rituximab; therefore, understanding how tumor cells are, or become, resistant to rituximab is of clinical relevance. In this report, we determined whether tumor cells express antigens that block complement-mediated lysis or antibody-dependent cell-mediated cytotoxicity (ADCC) and thereby contribute to rituximab resistance. We demonstrate that expression of the complement regulator CD59 is associated with resistance to rituximab-mediated complement lysis of multiple myeloma (MM) and non-Hodgkins lymphoma (NHL) cell lines. Moreover, neutralization of CD59 using a blocking monoclonal antibody reversed resistance to rituximab-mediated complement lysis of CD20++ CD59++ ARH-77 MM cells. In addition, we demonstrate the presence of CD59 and rituximab binding on viable tumor cells from patients with MM and Waldenstroms macroglobulinemia with progressive disease despite rituximab therapy. Last, we also examined MM and NHL B-cell lines, as well as patient tumor cells, for the expression of other antigens that may have a role in blocking ADCC activity, such as Fas ligand (FasL), MUC1, or TRAIL. FasL, MUC1, and/or TRAIL were coexpressed with complement regulators on many of these cells. These studies therefore show that complement regulators, particularly CD59 and antigens that may block ADCC, are present on various B-cell tumors and associated with rituximab resistance in patients. A prospective, clinical study is assessing the role of these antigens in mediating rituximab resistance.


Journal of Clinical Oncology | 2009

Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy.

Paul G. Richardson; Wanling Xie; Constantine S. Mitsiades; Asher Chanan-Khan; Sagar Lonial; Hani Hassoun; David Avigan; Anne Louise Oaklander; David J. Kuter; Patrick Y. Wen; Santosh Kesari; Hannah R. Briemberg; Robert Schlossman; Nikhil C. Munshi; L. Thompson Heffner; Deborah Doss; Dixie Lee Esseltine; Edie Weller; Kenneth C. Anderson; Anthony A. Amato

PURPOSE To assess efficacy and safety of single-agent bortezomib in previously untreated patients with multiple myeloma, investigate prevalence of baseline and treatment-emergent polyneuropathy, and identify molecular markers associated with response and neuropathy. PATIENTS AND METHODS Patients received bortezomib 1.3 mg/m(2) on days 1, 4, 8, and 11, for up to eight 21-day cycles. A subset of patients underwent neurophysiologic evaluation pre- and post-treatment. Bone marrow aspirates were performed at baseline for exploratory whole-genome analyses. Results Among 64 patients, 41% had partial response or better, including 9% complete/near-complete responses; median duration of response was 8.4 months. Response rates did not differ in the presence or absence of adverse cytogenetics. After median follow-up of 29 months, median time to progression was 17.3 months. Median overall survival had not been reached; estimated 1-year survival was 92%. Thirty-two patients successfully underwent optional stem-cell transplantation. Bortezomib treatment was generally well tolerated. At baseline, 20% of patients had sensory polyneuropathy. Sensory polyneuropathy developed during treatment in 64% of patients (grade 3 in 3%), but proved manageable and resolved in 85% within a median of 98 days. Neurologic examination, neurophysiologic testing, and measurements of epidermal nerve fiber densities in 35 patients confirmed pretreatment sensory neuropathy in 20% and new or worsening neuropathy in 63%. Pharmacogenomic analyses identified molecular markers of response and treatment-emergent neuropathy, which will require future study. CONCLUSION Single-agent bortezomib is effective in previously untreated myeloma. Baseline myeloma-associated neuropathy seems more common than previously reported, and bortezomib-associated neuropathy, although a common toxicity, is reversible in most patients.


Seminars in Oncology | 2001

Novel therapies targeting the myeloma cell and its bone marrow microenvironment

Teru Hideshima; Dharminder Chauhan; Klaus Podar; Robert Schlossman; Paul G. Richardson; Kenneth C. Anderson

Novel therapies in multiple myeloma (MM) target not only the tumor cell but also the bone marrow (BM) microenvironment. Thalidomide (Thal), as well as derivative immunomodulatory drugs (IMiDs), directly induce apoptosis or G1 growth arrest in MM cell lines and patients MM cells which are resistant to melphalan (Mel), doxorubicin (Dox), and dexamethasone (Dex). Although Thal and IMiDs do not alter adhesion of MM cells to bone marrow stromal cells (BMSCs), they inhibit the upregulation of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) secretion triggered by the binding of MM cells to BMSCs. Proteasome inhibitors represent another potential anticancer therapy targeting the MM cell and the BM microenvironment. The proteasome inhibitor PS-341 directly inhibits proliferation and induces apoptosis in both human MM cell lines and freshly isolated patients MM cells which are resistant to Mel, Dox, and Dex. PS-341 inhibits p44/42 mitogen-activated protein kinase (MAPK) growth signaling triggered by IL-6 and induces apoptosis, despite induction of p21 and p27, in p53 wild-type and p53 mutant MM cells. PS-341 adds to the anti-MM activity of dexamethasone and overcomes IL-6-mediated protection against dexamethasone-induced apoptosis. PS-341 blocks the paracrine growth of human MM cells by decreasing their adherence to BMSCs and related NF-kappaB-dependent induction of IL-6 secretion in BMSCs. Moreover, proliferation and MAPK growth signaling of those residual adherent MM cells is also inhibited. Tumor necrosis factor-alpha (TNF-alpha), which is produced by some MM cells, induces only low-level MM proliferation and MAPK activation in MM cells, but markedly upregulates IL-6 secretion from BMSCs and upregulates expression of adhesion molecules (VLA-4 and LFA-1) on MM cells and their receptors (VCAM-1 and ICAM-1) on BMSCs, with resultant increased binding of MM cells to BMSCs. Inhibition of TNF-alpha-induced NF-kappaB activation with PS-341 inhibits both the upregulation of these molecules on MM cells and BMSCs and the resultant increased adhesion. Therefore, inhibiting TNF-alpha and its sequelae may be useful treatment strategies in MM. Our data show that VEGF causes proliferation and enhances migration of MM as well as plasma cell leukemia (PCL) cells. VEGF induced twofold activation of cell migration in MM cells and more than 100-fold activation of cell migration in PCL cells, suggesting an important role of VEGF in the progression of MM to PCL. These data indicate that VEGF plays a pivotal role not only in neoangiogenesis in MM BM but also in proliferation and migration of tumor cells.


Blood | 2013

PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma

Paul G. Richardson; Robert Schlossman; Melissa Alsina; Donna M. Weber; Steven Coutre; Cristina Gasparetto; Sutapa Mukhopadhyay; Michael S. Ondovik; Mahmudul Khan; Carole Paley; Sagar Lonial

Panobinostat is an oral pan-deacetylase inhibitor that synergizes with bortezomib to inhibit both the aggresome and proteasome pathways in preclinical studies. PANORAMA 2 is a phase 2 trial of panobinostat in combination with bortezomib and dexamethasone to treat patients with relapsed and bortezomib-refractory multiple myeloma (with ≥2 prior lines of therapy, including an immunomodulatory drug, and patients who had progressed on or within 60 days of the last bortezomib-based therapy). Fifty-five heavily pretreated patients were enrolled (median, 4 prior regimens, including a median of 2 prior bortezomib-containing regimens). The overall response rate was 34.5% (1 near-complete response and 18 partial responses). An additional 10 patients achieved minimal response, for a clinical benefit rate of 52.7%. Median exposure and progression-free survival were 4.6 and 5.4 months, respectively. In patients who achieved a response, median time to response was 1.4 months, and median duration of response was 6.0 months. Common grade 3/4 adverse events, regardless of study drug relationship, included thrombocytopenia (63.6%), fatigue (20.0%), and diarrhea (20.0%). Only 1 patient had grade 3 peripheral neuropathy. Panobinostat, when combined with bortezomib and dexamethasone, can recapture responses in heavily pretreated, bortezomib-refractory multiple myeloma patients. This trial was registered at www.clinicaltrials.gov as #NCT01083602.


Journal of Clinical Oncology | 1998

High-dose chemoradiotherapy and anti-B-cell monoclonal antibody-purged autologous bone marrow transplantation in mantle-cell lymphoma: no evidence for long-term remission.

Arnold S. Freedman; Donna Neuberg; John G. Gribben; Peter Mauch; Robert J. Soiffer; David C. Fisher; Kenneth C. Anderson; Neils Andersen; Robert Schlossman; Mary Kroon; Jerome Ritz; Lee M. Nadler

PURPOSE The role for high-dose therapy and autologous stem-cell transplantation in mantle-cell lymphoma (MCL) is unknown. We retrospectively analyzed patients with chemosensitive disease who underwent high-dose chemoradiotherapy and anti-B-cell monoclonal antibody-purged autologous bone marrow transplantation (ABMT) for MCL in first remission, as well as following relapse from conventional therapy. PATIENTS AND METHODS Between August 1985 and April 1996, 28 patients underwent ABMT using a uniform ablative regimen with cyclophosphamide and total-body irradiation (TBI) and a bone marrow-purging regimen. Re-review of original tissue demonstrated that all patients had morphologic, phenotypic, and genotypic characteristics of MCL. MCL was the original diagnosis in 21 patients, whereas seven patients had a prior diagnosis of diffuse small cleaved-cell lymphoma. RESULTS Twenty patients received multiple regimens before ABMT, while eight underwent ABMT in first complete remission (CR)/partial remission (PR) following CHOP induction. At bone marrow harvest, only 18% of patients were in CR and overt BM infiltration was present in 57%. Following cyclophosphamide/TBI, no treatment-related deaths were seen. Nineteen of 28 patients have relapsed at a median time of 21 months (range, 3 to 70). Of eight patients transplanted in first CR/PR, five have relapsed. Nine patients are in continuous CR with a median follow-up time of 24 months (range, 10 to 135). Disease-free survival (DFS) and overall survival (OS) are estimated to be 31% and 62% at 4 years, respectively. CONCLUSION ABMT using cyclophosphamide/TBI conditioning may at best be effective in only a small fraction of patients with relapsed MCL. The lack of plateau with a median follow-up time of 24 months suggests cure may not be achievable. The role of this therapy in patients in first remission requires more study using better induction therapy to enhance the CR rate before ABMT.

Collaboration


Dive into the Robert Schlossman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge