Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Thacker is active.

Publication


Featured researches published by Robert W. Thacker.


PLOS Biology | 2015

Finding Our Way through Phenotypes

Andrew R. Deans; Suzanna E. Lewis; Eva Huala; Salvatore S. Anzaldo; Michael Ashburner; James P. Balhoff; David C. Blackburn; Judith A. Blake; J. Gordon Burleigh; Bruno Chanet; Laurel Cooper; Mélanie Courtot; Sándor Csösz; Hong Cui; Wasila M. Dahdul; Sandip Das; T. Alexander Dececchi; Agnes Dettai; Rui Diogo; Robert E. Druzinsky; Michel Dumontier; Nico M. Franz; Frank Friedrich; George V. Gkoutos; Melissa Haendel; Luke J. Harmon; Terry F. Hayamizu; Yongqun He; Heather M. Hines; Nizar Ibrahim

Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.


Nature Communications | 2016

Diversity, structure and convergent evolution of the global sponge microbiome

Torsten Thomas; Lucas Moitinho-Silva; Miguel Lurgi; Johannes R. Björk; Cole Easson; Carmen Astudillo-García; Julie B. Olson; Patrick M. Erwin; Susanna López-Legentil; Heidi M. Luter; Andia Chaves-Fonnegra; Rodrigo Costa; Peter J. Schupp; Laura Steindler; Dirk Erpenbeck; Jack A. Gilbert; Rob Knight; Gail Ackermann; Jose V. Lopez; Michael W. Taylor; Robert W. Thacker; José M. Montoya; Ute Hentschel; Nicole S. Webster

Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the worlds oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions.


Integrative and Comparative Biology | 2005

Impacts of Shading on Sponge-Cyanobacteria Symbioses: A Comparison between Host-Specific and Generalist Associations

Robert W. Thacker

Abstract The marine sponge Lamellodysidea chlorea contains large populations of the host-specific, filamentous cyanobacterium Oscillatoria spongeliae. Other marine sponges, including Xestospongia exigua, contain the generalist, unicellular cyanobacterium Synechococcus spongiarum. The impact of cyanobacterial photosynthesis on host sponges was manipulated by shading these sponge-cyanobacteria associations. If cyanobacteria benefit their hosts, shading should reduce this benefit. Chlorophyll a concentrations were measured as an index of cyanobacterial abundance. After two weeks, shaded L. chlorea lost more mass than controls, while shaded and control X. exigua did not lose a significant amount of mass. Chlorophyll a concentrations in shaded X. exigua were lower than in controls, but were not significantly different between shaded and control L. chlorea. In addition, L. chlorea shaded in situ lost over 40% of their initial area, but did not differ in chlorophyll a concentrations from controls. These results suggest that Oscillatoria symbionts benefit their host sponges in a mutualistic association. Synechococcus symbionts may be commensals that exploit the resources provided by their sponge hosts without significantly affecting sponge mass. When shaded, Synechococcus symbionts may be consumed by their hosts or may be able to disperse from this unfavorable environment. These data support the hypothesis that more specialized symbionts provide a greater benefit to their hosts, but hypotheses concerning the dispersal abilities of these symbionts remain to be explored. Sponge-cyanobacteria symbioses provide model systems for investigating the costs and benefits of symbiosis and the roles of dispersal, environmental conditions, and phylogenetic history in determining the specificity of endosymbionts for their hosts.


PLOS ONE | 2013

Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes

Malcolm Hill; April Hill; Jose V. Lopez; Kevin J. Peterson; Shirley A. Pomponi; María del Carmen Cuevas Díaz; Robert W. Thacker; Maja Adamska; Nicole Boury-Esnault; Paco Cárdenas; Andia Chaves-Fonnegra; Elizabeth S. Danka; Bre-Onna De Laine; Dawn Formica; Eduardo Hajdu; Gisele Lôbo-Hajdu; Sarah Klontz; Christine Morrow; Jignasa Patel; Bernard Picton; Davide Pisani; Deborah Pohlmann; Niamh E. Redmond; John K. Reed; Stacy Richey; Ana Riesgo; Ewelina Rubin; Zach Russell; Klaus Rützler; Erik A. Sperling

Background Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. Methodology/Principal Findings We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A well-supported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. Conclusions/Significance These results, using an independent nuclear gene set, confirmed many hypotheses based on ribosomal and/or mitochondrial genes, and they also identified clades with low statistical support or clades that conflicted with traditional morphological classification. Our results will serve as a basis for future exploration of these outstanding questions using more taxon- and gene-rich datasets.


Advances in Marine Biology | 2012

Sponge-microbe symbioses: recent advances and new directions.

Robert W. Thacker; Christopher J. Freeman

Sponges can host abundant and diverse communities of symbiotic microorganisms. In this chapter, we review recent work in the area of sponge-microbe symbioses, focusing on (1) the diversity of these associations, (2) host specificity, (3) modes of symbiont transmission, and (4) the positive and negative impacts of symbionts on their hosts. Over the past 4 years, numerous studies have catalogued the diversity of sponge-microbe symbioses, challenging previous hypotheses of a uniform, vertically transmitted microbial community and supporting a mixed model of symbiont community transmission. We emphasize the need for experimental manipulations of sponge-symbiont interactions coupled with advanced laboratory techniques to determine the identity of metabolically active microbial symbionts, to investigate the physiological processes underlying these interactions, and to elucidate whether symbionts act as mutualists, commensals, or parasites. The amazing diversity of these complex associations continues to offer critical insights into the evolution of symbiosis and the impacts of symbiotic microbes on nutrient cycling and other ecosystem functions.


Journal of the Marine Biological Association of the United Kingdom | 2007

Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages

Patrick M. Erwin; Robert W. Thacker

Marine sponges are abundant and diverse components of coral reefs and commonly harbour photosynthetic symbionts in these environments. The most prevalent symbiont is the cyanobacterium, Synechococcus spongiarum, isolated from taxonomically diverse hosts from geographically distant regions. We combined analyses of chlorophyll-a (chl-a) concentrations with line-intercept transect surveys to assess the abundance and diversity of reef sponges hosting photosymbionts on Caribbean coral reefs in the Bocas del Toro Archipelago, Panama. To identify symbionts, we designed PCR primers that specifically amplify a fragment of the 16S ribosomal RNA gene from S. spongiarum and used these primers to screen potential host sponges for the presence of this symbiont. Chlorophyll-a data divided the sponge community into two disparate groups, species with high (>125 µg/g, N=20) and low (<50 µg/g, N=38) chl-a concentrations. Only two species exhibited intermediate (50– 125 µg/g) chl-a concentrations; these species represented hosts with reduced symbiont populations, including bleached Xestospongia muta and the mangrove form of Chondrilla nucula (C. nucula f. hermatypica). Sponges with high and intermediate chl-a concentrations accounted for over one-third of the species diversity and abundance of sponges in these communities. Most (85%) of these sponges harboured S. spongiarum. Molecular phylogenies reveal that S. spongiarum represents a sponge-specific Synechococcus lineage, distinct from free-living cyanobacteria. The prevalence of sponge–photosymbiont associations and dominance of symbiont communities by S. spongiarum suggest a major role of this cyanobacterium in sponge ecology and primary productivity on coral reefs.


The ISME Journal | 2007

Soaking it up: the complex lives of marine sponges and their microbial associates.

Michael W Taylor; Russell T. Hill; Jörn Piel; Robert W. Thacker; Ute Hentschel

Marine sponges (phylum Porifera) are among the oldest multicellular animals (metazoans), the seas most prolific producers of bioactive metabolites, and of considerable ecological importance due to their abundance and ability to filter enormous volumes of seawater. In addition to these important attributes, sponge microbiology is now a rapidly expanding field.


Molecular Ecology | 2008

Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts

Patrick M. Erwin; Robert W. Thacker

Cyanobacteria are common members of sponge‐associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum, molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.


PLOS ONE | 2011

Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.

Patrick M. Erwin; Julie B. Olson; Robert W. Thacker

Background Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. Methodology/Principal Findings We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). Conclusions/Significance The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.


Integrative and Comparative Biology | 2013

Phylogeny and Systematics of Demospongiae in Light of New Small-Subunit Ribosomal DNA (18S) Sequences

Niamh E. Redmond; Christine Morrow; Robert W. Thacker; Maria Cristina Diaz; Nicole Boury-Esnault; Paco Cárdenas; Eduardo Hajdu; Gisele Lôbo-Hajdu; Bernard Picton; Shirley A. Pomponi; Ehsan Kayal; Allen Gilbert Collins

The most diverse and species-rich class of the phylum Porifera is Demospongiae. In recent years, the systematics of this clade, which contains more than 7000 species, has developed rapidly in light of new studies combining molecular and morphological observations. We add more than 500 new, nearly complete 18S sequences (an increase of more than 200%) in an attempt to further enhance understanding of the phylogeny of Demospongiae. Our study specifically targets representation of type species and genera that have never been sampled for any molecular data in an effort to accelerate progress in classifying this diverse lineage. Our analyses recover four highly supported subclasses of Demospongiae: Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha. Within Keratosa, neither Dendroceratida, nor its two families, Darwinellidae and Dictyodendrillidae, are monophyletic and Dictyoceratida is divided into two lineages, one predominantly composed of Dysideidae and the second containing the remaining families (Irciniidae, Spongiidae, Thorectidae, and Verticillitidae). Within Myxospongiae, we find Chondrosida to be paraphyletic with respect to the Verongida. We amend the latter to include species of the genus Chondrosia and erect a new order Chondrillida to contain remaining taxa from Chondrosida, which we now discard. Even with increased taxon sampling of Haploscleromorpha, our analyses are consistent with previous studies; however, Haliclona species are interspersed in even more clades. Haploscleromorpha contains five highly supported clades, each more diverse than previously recognized, and current families are mostly polyphyletic. In addition, we reassign Janulum spinispiculum to Haploscleromorpha and resurrect Reniera filholi as Janulum filholi comb. nov. Within the large clade Heteroscleromorpha, we confirmed 12 recently identified clades based on alternative data, as well as a sister-group relationship between the freshwater Spongillida and the family Vetulinidae. We transfer Stylissa flabelliformis to the genus Scopalina within the family Scopalinidae, which is of uncertain position. Our analyses uncover a large, strongly supported clade containing all heteroscleromorphs other than Spongillida, Vetulinidae, and Scopalinidae. Within this clade, there is a major division separating Axinellidae, Biemnida, Tetractinellida, Bubaridae, Stelligeridae, Raspailiidae, and some species of Petromica, Topsentia, and Axinyssa from Agelasida, Polymastiidae, Placospongiidae, Clionaidae, Spirastrellidae, Tethyidae, Poecilosclerida, Halichondriidae, Suberitidae, and Trachycladus. Among numerous results: (1) Spirophorina and its family Tetillidae are paraphyletic with respect to a strongly supported Astrophorina within Tetractinellida; (2) Agelasida is the earliest diverging lineage within the second clade listed above; and (3) Merlia and Desmacella appear to be the earliest diverging lineages of Poecilosclerida.

Collaboration


Dive into the Robert W. Thacker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick M. Erwin

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niamh E. Redmond

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Allen Gilbert Collins

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Freeman

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Christine Morrow

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Eduardo Hajdu

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Gisele Lôbo-Hajdu

Rio de Janeiro State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge