Roberta Azzarelli
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberta Azzarelli.
Cell and Tissue Research | 2015
Laura J.A. Hardwick; Fahad Ali; Roberta Azzarelli; Anna Philpott
Formation of the central nervous system requires a period of extensive progenitor cell proliferation, accompanied or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system gives rise to differential growth and cellular diversity. The correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell cycle influences on both early lineage commitment and terminal cell fate decisions. Significant advances have been made in the last decade and have revealed multi-directional interactions between the molecular machinery regulating the processes of cell proliferation and neuronal differentiation. Here, we first introduce the modes of proliferation in neural progenitor cells and summarise evidence linking cell cycle length and neuronal differentiation. Second, we describe the manner in which components of the cell cycle machinery can have additional and, sometimes, cell-cycle-independent roles in directly regulating neurogenesis. Finally, we discuss the way that differentiation factors, such as proneural bHLH proteins, can promote either progenitor maintenance or differentiation according to the cellular environment. These intricate connections contribute to precise coordination and the ultimate division versus differentiation decision.
Frontiers in Cellular Neuroscience | 2015
Roberta Azzarelli; Thomas Kerloch; Emilie Pacary
The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.
Developmental Cell | 2017
Roberta Azzarelli; Christopher Hurley; Magdalena K. Sznurkowska; Steffen Rulands; Laura J.A. Hardwick; Ivonne Gamper; Fahad Ali; Laura McCracken; Christopher J. Hindley; Fiona Kate Elizabeth McDuff; Sonia Nestorowa; Richard Kemp; K. W. Jones; Berthold Göttgens; Meritxell Huch; Gerard I. Evan; B. D. Simons; Douglas J. Winton; Anna Philpott
Summary The proneural transcription factor Neurogenin3 (Ngn3) plays a critical role in pancreatic endocrine cell differentiation, although regulation of Ngn3 protein is largely unexplored. Here we demonstrate that Ngn3 protein undergoes cyclin-dependent kinase (Cdk)-mediated phosphorylation on multiple serine-proline sites. Replacing wild-type protein with a phosphomutant form of Ngn3 increases α cell generation, the earliest endocrine cell type to be formed in the developing pancreas. Moreover, un(der)phosphorylated Ngn3 maintains insulin expression in adult β cells in the presence of elevated c-Myc and enhances endocrine specification during ductal reprogramming. Mechanistically, preventing multi-site phosphorylation enhances both Ngn3 stability and DNA binding, promoting the increased expression of target genes that drive differentiation. Therefore, multi-site phosphorylation of Ngn3 controls its ability to promote pancreatic endocrine differentiation and to maintain β cell function in the presence of pro-proliferation cues and could be manipulated to promote and maintain endocrine differentiation in vitro and in vivo.
Frontiers in Neuroscience | 2015
Roberta Azzarelli; François Guillemot; Emilie Pacary
The mammalian cerebral cortex contains a high variety of neuronal subtypes that acquire precise spatial locations and form long or short-range connections to establish functional neuronal circuits. During embryonic development, cortical projection neurons are generated in the areas lining the lateral ventricles and they subsequently undergo radial migration to reach the position of their final maturation within the cortical plate. The control of the neuroblast migratory behavior and the coordination of the migration process with other neurogenic events such as cell cycle exit, differentiation and final maturation are crucial to normal brain development. Among the key regulators of cortical neuron migration, the small GTP binding proteins of the Rho family and the atypical Rnd members play important roles in integrating intracellular signaling pathways into changes in cytoskeletal dynamics and motility behavior. Here we review the role of Rnd proteins during cortical neuronal migration and we discuss both the upstream mechanisms that regulate Rnd protein activity and the downstream molecular pathways that mediate Rnd effects on cell cytoskeleton.
Wiley Interdisciplinary Reviews-Developmental Biology | 2015
Roberta Azzarelli; Laura J.A. Hardwick; Anna Philpott
During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate‐restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype‐specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs Dev Biol 2015, 4:197–214. doi: 10.1002/wdev.174
Chemistry & Biology | 2017
Ana J. Narváez; Suzan Ber; Alex Crooks; Amy Emery; Bryn Hardwick; Estrella Guarino Almeida; David J. Huggins; David Perera; Meredith Roberts-Thomson; Roberta Azzarelli; Fiona E. Hood; Ian A. Prior; David Winter Walker; Richard J. Boyce; Robert George Boyle; Samuel P. Barker; Christopher J. Torrance; Grahame J. McKenzie; Ashok R. Venkitaraman
Summary Mutations activating KRAS underlie many forms of cancer, but are refractory to therapeutic targeting. Here, we develop Poloppin, an inhibitor of protein-protein interactions via the Polo-box domain (PBD) of the mitotic Polo-like kinases (PLKs), in monotherapeutic and combination strategies to target mutant KRAS. Poloppin engages its targets in biochemical and cellular assays, triggering mitotic arrest with defective chromosome congression. Poloppin kills cells expressing mutant KRAS, selectively enhancing death in mitosis. PLK1 or PLK4 depletion recapitulates these cellular effects, as does PBD overexpression, corroborating Poloppins mechanism of action. An optimized analog with favorable pharmacokinetics, Poloppin-II, is effective against KRAS-expressing cancer xenografts. Poloppin resistance develops less readily than to an ATP-competitive PLK1 inhibitor; moreover, cross-sensitivity persists. Poloppin sensitizes mutant KRAS-expressing cells to clinical inhibitors of c-MET, opening opportunities for combination therapy. Our findings exemplify the utility of small molecules modulating the protein-protein interactions of PLKs to therapeutically target mutant KRAS-expressing cancers.
Developmental Cell | 2018
Magdalena K. Sznurkowska; Edouard Hannezo; Roberta Azzarelli; Steffen Rulands; Sonia Nestorowa; Christopher J. Hindley; Jennifer Nichols; Berthold Göttgens; Meritxell Huch; Anna Philpott; B. D. Simons
Summary Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments.
Cell Stem Cell | 2018
Goran Tomic; Edward Morrissey; Sarah Kozar; Shani Ben-Moshe; Alice Hoyle; Roberta Azzarelli; Richard Kemp; Chandra Sekhar Reddy Chilamakuri; Shalev Itzkovitz; Anna Philpott; Douglas J. Winton
Summary The intestinal epithelium is largely maintained by self-renewing stem cells but with apparently committed progenitors also contributing, particularly following tissue damage. However, the mechanism of, and requirement for, progenitor plasticity in mediating pathological response remain unknown. Here we show that phosphorylation of the transcription factor Atoh1 is required for both the contribution of secretory progenitors to the stem cell pool and for a robust regenerative response. As confirmed by lineage tracing, Atoh1+ cells (Atoh1(WT)CreERT2 mice) give rise to multilineage intestinal clones both in the steady state and after tissue damage. In a phosphomutant Atoh1(9S/T-A)CreERT2 line, preventing phosphorylation of ATOH1 protein acts to promote secretory differentiation and inhibit the contribution of progenitors to self-renewal. Following chemical colitis, Atoh1+ cells of Atoh1(9S/T-A)CreERT2 mice have reduced clonogenicity that affects overall regeneration. Progenitor plasticity maintains robust self-renewal in the intestinal epithelium, and the balance between stem and progenitor fate is directly coordinated by ATOH1 multisite phosphorylation.
Scientific Reports | 2018
Roberta Azzarelli; Steffen Rulands; Sonia Nestorowa; John Huw Davies; Sara Campinoti; Sébastien Gillotin; Paola Bonfanti; Berthold Göttgens; Meritxell Huch; B. D. Simons; Anna Philpott
Abstractβ-cell replacement has been proposed as an effective treatment for some forms of diabetes, and in vitro methods for β-cell generation are being extensively explored. A potential source of β-cells comes from fate conversion of exocrine pancreatic cells into the endocrine lineage, by overexpression of three regulators of pancreatic endocrine formation and β-cell identity, Ngn3, Pdx1 and MafA. Pancreatic ductal organoid cultures have recently been developed that can be expanded indefinitely, while maintaining the potential to differentiate into the endocrine lineage. Here, using mouse pancreatic ductal organoids, we see that co-expression of Ngn3, Pdx1 and MafA are required and sufficient to generate cells that express insulin and resemble β-cells transcriptome-wide. Efficiency of β-like cell generation can be significantly enhanced by preventing phosphorylation of Ngn3 protein and further augmented by conditions promoting differentiation. Taken together, our new findings underline the potential of ductal organoid cultures as a source material for generation of β-like cells and demonstrate that post-translational regulation of reprogramming factors can be exploited to enhance β-cell generation.
Development | 2018
Roberta Azzarelli; B. D. Simons; Anna Philpott
ABSTRACT The development of the nervous system relies on the coordinated regulation of stem cell self-renewal and differentiation. The discovery that brain tumours contain a subpopulation of cells with stem/progenitor characteristics that are capable of sustaining tumour growth has emphasized the importance of understanding the cellular dynamics and the molecular pathways regulating neural stem cell behaviour. By focusing on recent work on glioma and medulloblastoma, we review how lineage tracing contributed to dissecting the embryonic origin of brain tumours and how lineage-specific mechanisms that regulate stem cell behaviour in the embryo may be subverted in cancer to achieve uncontrolled proliferation and suppression of differentiation. Summary: Lineage-tracing work in glioma and medulloblastoma reveals similarities between neuronal development and brain tumours, identifying potential new therapeutic avenues that exploit vulnerabilities in tumour growth patterns.