Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Salguero-Gómez is active.

Publication


Featured researches published by Roberto Salguero-Gómez.


Nature | 2014

Diversity of ageing across the tree of life

Owen R. Jones; Alexander Scheuerlein; Roberto Salguero-Gómez; Carlo Giovanni Camarda; Ralf Schaible; Brenda B. Casper; Johan P. Dahlgren; Johan Ehrlén; María B. García; Eric S. Menges; Pedro F. Quintana-Ascencio; Hal Caswell; Annette Baudisch; James W. Vaupel

Evolution drives, and is driven by, demography. A genotype moulds its phenotype’s age patterns of mortality and fertility in an environment; these two patterns in turn determine the genotype’s fitness in that environment. Hence, to understand the evolution of ageing, age patterns of mortality and reproduction need to be compared for species across the tree of life. However, few studies have done so and only for a limited range of taxa. Here we contrast standardized patterns over age for 11 mammals, 12 other vertebrates, 10 invertebrates, 12 vascular plants and a green alga. Although it has been predicted that evolution should inevitably lead to increasing mortality and declining fertility with age after maturity, there is great variation among these species, including increasing, constant, decreasing, humped and bowed trajectories for both long- and short-lived species. This diversity challenges theoreticians to develop broader perspectives on the evolution of ageing and empiricists to study the demography of more species.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Functional traits explain variation in plant life history strategies

Peter B. Adler; Roberto Salguero-Gómez; Aldo Compagnoni; Joanna S. Hsu; Jayanti Ray-Mukherjee; Cyril Mbeau-Ache; Miguel Franco

Significance Plants have evolved diverse life history strategies to succeed in Earth’s varied environments. Some species grow quickly, produce copious seeds, and die within a few weeks. Other species grow slowly and rarely produce seeds but live thousands of years. We show that simple morphological measurements can predict where a species falls within the global range of life history strategies: species with large seeds, long-lived leaves, or dense wood have population growth rates influenced primarily by survival, whereas individual growth and fecundity have a stronger influence on the dynamics of species with small seeds, short-lived leaves, or soft wood. This finding increases the ability of scientists to represent complex population processes with a few easily measured character traits. Ecologists seek general explanations for the dramatic variation in species abundances in space and time. An increasingly popular solution is to predict species distributions, dynamics, and responses to environmental change based on easily measured anatomical and morphological traits. Trait-based approaches assume that simple functional traits influence fitness and life history evolution, but rigorous tests of this assumption are lacking, because they require quantitative information about the full lifecycles of many species representing different life histories. Here, we link a global traits database with empirical matrix population models for 222 species and report strong relationships between functional traits and plant life histories. Species with large seeds, long-lived leaves, or dense wood have slow life histories, with mean fitness (i.e., population growth rates) more strongly influenced by survival than by growth or fecundity, compared with fast life history species with small seeds, short-lived leaves, or soft wood. In contrast to measures of demographic contributions to fitness based on whole lifecycles, analyses focused on raw demographic rates may underestimate the strength of association between traits and mean fitness. Our results help establish the physiological basis for plant life history evolution and show the potential for trait-based approaches in population dynamics.


Philosophical Transactions of the Royal Society B | 2012

It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands

Fernando T. Maestre; Roberto Salguero-Gómez; José L. Quero

Drylands occupy large portions of the Earth, and are a key terrestrial biome from the socio-ecological point of view. In spite of their extent and importance, the impacts of global environmental change on them remain poorly understood. In this introduction, we review some of the main expected impacts of global change in drylands, quantify research efforts on the topic, and highlight how the articles included in this theme issue contribute to fill current gaps in our knowledge. Our literature analyses identify key under-studied areas that need more research (e.g. countries such as Mauritania, Mali, Burkina Faso, Chad and Somalia, and deserts such as the Thar, Kavir and Taklamakan), and indicate that most global change research carried out to date in drylands has been done on a unidisciplinary basis. The contributions included here use a wide array of organisms (from micro-organisms to humans), spatial scales (from local to global) and topics (from plant demography to poverty alleviation) to examine key issues to the socio-ecological impacts of global change in drylands. These papers highlight the complexities and difficulties associated with the prediction of such impacts. They also identify the increased use of long-term experiments and multidisciplinary approaches as priority areas for future dryland research. Major advances in our ability to predict and understand global change impacts on drylands can be achieved by explicitly considering how the responses of individuals, populations and communities will in turn affect ecosystem services. Future research should explore linkages between these responses and their effects on water and climate, as well as the provisioning of services for human development and well-being.


Journal of Ecology | 2015

The COMPADRE Plant Matrix Database: an open online repository for plant demography.

Roberto Salguero-Gómez; Owen R. Jones; C. Ruth Archer; Yvonne M. Buckley; Judy Che‐Castaldo; Hal Caswell; David J. Hodgson; Alexander Scheuerlein; Dalia Amor Conde; Erik Brinks; Hendrik Buhr; Claudia Farack; Alexander Hartmann; Anne Henning; Gabriel Hoppe; Gesa Römer; Jens Runge; Tara Ruoff; Julia Wille; Stefan Zeh; Raziel Davison; Dirk Vieregg; Annette Baudisch; Res Altwegg; Fernando Colchero; Ming Dong; Hans de Kroon; Jean-Dominique Lebreton; Charlotte J. E. Metcalf; Maile M. Neel

Summary 1. Schedules of survival, growth and reproduction are key life-history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population


Methods in Ecology and Evolution | 2014

Advancing population ecology with integral projection models: a practical guide

Cory Merow; Johan P. Dahlgren; C. Jessica E. Metcalf; Dylan Z. Childs; Margaret E. K. Evans; Eelke Jongejans; Sydne Record; Mark Rees; Roberto Salguero-Gómez; Sean M. McMahon

Summary 1. Integral projection models (IPMs) use information on how an individual’s state influences its vital rates – survival, growth and reproduction – to make population projections. IPMs are constructed from regression models predicting vital rates from state variables (e.g. size or age) and covariates (e.g. environment). By combining regressions of vital rates, an IPM provides mechanistic insight into emergent ecological patterns such as population dynamics, species geographic distributions or life-history strategies. 2. Here, we review important resources for building IPMs and provide a comprehensive guide, with extensive R code, for their construction. IPMs can be applied to any stage-structured population; here, we illustrate IPMs for a series of plant life histories of increasing complexity and biological realism, highlighting the utility of various regression methods for capturing biological patterns. We also present case studies illustrating how IPMs can be used to predict species’ geographic distributions and life-history strategies. 3. IPMs can represent a wide range of life histories at any desired level of biological detail. Much of the strength of IPMs lies in the strength of regression models. Many subtleties arise when scaling from vital rate regressions to population-level patterns, so we provide a set of diagnostics and guidelines to ensure that models are biologically plausible. Moreover, IPMs can exploit a large existing suite of analytical tools developed for matrix projection models.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide

Roberto Salguero-Gómez; Owen R. Jones; Eelke Jongejans; Simon P. Blomberg; David J. Hodgson; Cyril Mbeau-Ache; Pieter A. Zuidema; Hans de Kroon; Yvonne M. Buckley

Significance Schedules of survival, growth, and reproduction define life-history strategies across species. Understanding how life-history strategies are structured is fundamental to our understanding of the evolution, abundance, and distribution of species. We found that life-history strategies of 418 plant species worldwide are explained by an axis representing the pace of life and another representing the wide range of reproductive strategies. This framework predicts responses to perturbations and long-term population performance, showing great promise as a predictive tool for plant population responses to environmental change. The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast–slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast–slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.


Journal of Ecology | 2013

Age, stage and senescence in plants

Hal Caswell; Roberto Salguero-Gómez

1. Senescence (an increase in the mortality rate or force of mortality, or a decrease in fertility, with increasing age) is a widespread phenomenon. Theories about the evolution of senescence have long focused on the age trajectories of the selection gradients on mortality and fertility. In purely age-classified models, these selection gradients are non-increasing with age, implying that traits expressed early in life have a greater impact on fitness than traits expressed later in life. This pattern leads inevitably to the evolution of senescence if there are trade-offs between early and late performance. 2. It has long been suspected that the stage- or size-dependent demography typical of plants might change these conclusions. In this paper, we develop a model that includes both stage- and age-dependence and derive the age-dependent, stage-dependent and age×stage-dependent selection gradients on mortality and fertility. 3. We applied this model to stage-classified population projection matrices for 36 species of plants, from a wide variety of growth forms (from mosses to trees) and habitats. 4. We found that the age-specific selection gradients within a life cycle stage can exhibit increases with age (we call these contra-senescent selection gradients). In later stages, often large size classes in plant demography, the duration of these contra-senescent gradients can exceed the life expectancy by several fold. 5. Synthesis. The interaction of age- and stage-dependence in plants leads to selection pressures on senescence fundamentally different from those found in previous, age-classified theories. This result may explain the observation that large plants seem less subject to senescence than most kinds of animals. The methods presented here can lead to improved analysis of both age-dependent and stage-dependent demographic properties of plant populations.


Ecosphere | 2015

Connecting people and ideas from around the world: global innovation platforms for next-generation ecology and beyond

Peter Søgaard Jørgensen; Frédéric Barraquand; Vincent Bonhomme; Timothy J. Curran; Ellen Cieraad; Thomas H. G. Ezard; Laureano A. Gherardi; R. Andrew Hayes; Timothée Poisot; Roberto Salguero-Gómez; Lucía DeSoto; Brian Swartz; Jennifer M. Talbot; Brian Wee; Naupaka Zimmerman

We present a case for using Global Community Innovation Platforms (GCIPs), an approach to improve innovation and knowledge exchange in international scientific communities through a common and open online infrastructure. We highlight the value of GCIPs by focusing on recent efforts targeting the ecological sciences, where GCIPs are of high relevance given the urgent need for interdisciplinary, geographical, and cross-sector collaboration to cope with growing challenges to the environment as well as the scientific community itself. Amidst the emergence of new international institutions, organizations, and meetings, GCIPs provide a stable international infrastructure for rapid and long-term coordination that can be accessed by any individual. This accessibility can be especially important for researchers early in their careers. Recent examples of early-career GCIPs complement an array of existing options for early-career scientists to improve skill sets, increase academic and social impact, and broaden career opportunities. We provide a number of examples of existing early-career initiatives that incorporate elements from the GCIPs approach, and highlight an in-depth case study from the ecological sciences: the International Network of Next-Generation Ecologists (INNGE), initiated in 2010 with support from the International Association for Ecology and 20 member institutions from six continents.


The American Naturalist | 2010

Matrix dimensions bias demographic inferences: implications for comparative plant demography.

Roberto Salguero-Gómez; Joshua B. Plotkin

While the wealth of projection matrices in plant demography permits comparative studies, variation in matrix dimensions complicates interspecific comparisons. Collapsing matrices to a common dimension may facilitate such comparisons but may also bias the inferred demographic parameters. Here we examine how matrix dimension affects inferred demographic elasticities and how different collapsing criteria perform. We analyzed \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


Journal of Animal Ecology | 2016

COMADRE - A global data base of animal demography

Roberto Salguero-Gómez; Owen R. Jones; C. Ruth Archer; Christoph Bein; Hendrik Buhr; Claudia Farack; Alexander Hartmann; Anne Henning; Gabriel Hoppe; Gesa Römer; Tara Ruoff; Veronika Sommer; Julia Wille; Jakob Voigt; Stefan Zeh; Dirk Vieregg; Yvonne M. Buckley; Judy Che‐Castaldo; David J. Hodgson; Alexander Scheuerlein; Hal Caswell; James W. Vaupel

Collaboration


Dive into the Roberto Salguero-Gómez's collaboration.

Top Co-Authors

Avatar

Owen R. Jones

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Brenda B. Casper

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Eelke Jongejans

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean M. McMahon

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar

Hal Caswell

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge