Robyn Maree Slattery
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robyn Maree Slattery.
Diabetes | 1989
Brett Charlton; Angela Bacelj; Robyn Maree Slattery; Thomas E. Mandel
Nonobese diabetic (NOD) mice spontaneously develop a lymphocytic infiltration of pancreatic islets (insulitis) that may progress to overt diabetes. Virtually all NOD/WEHI mice develop insulitis, but very few progress to diabetes. However, cyclophosphamide (CY) can promote the onset of diabetes in NOD mice, including the NOD/WEHI strain. The means by which CY produces diabetes was investigated in NOD/WEHI mice, in which it was hypothesized that active suppression mechanisms prevented the progression from insulitis to diabetes. A study of the time course of insulitis in the islets after CY was given showed that insulitis was initially reduced but rapidly increased over 16 days, and T-lymphocytes were predominant in the lesion. This suggested a compression of the normal time course of the disease seen in NOD mice. CY did not produce diabetes in any of 11 non-NOD strains studied. Fetal isografts in NOD mice given CY several days before were subjected to lymphocytic infiltration and β-cell destruction. These findings suggested that CY was not directly (β-cell toxic and that altered β-cells were not essential for β-cell destruction. This was further demonstrated with subdiabetogenic doses of streptozocin, which significantly damaged β-cells but did not increase the severity of insulitis or induce diabetes as did CY. Most important, the transfer of mononuclear cells from nondiabetic NOD mice to mice given CY prevented diabetes, which indicated that the likely effect of CY was via immunomodulation, possibly by allowing poised effector cells to act on (β-cells. The NOD/WEHI mice appear to have suppressor mechanisms acting to halt the progression of the early insulitis lesion and so preventing diabetes occurring in most mice. We propose that CY removes these suppressors and thereby induces a rapid progression to diabetes by compressing the normal immune destruction process into a 2-wk period. This model affords the opportunity to study the process in ways not practicable in the usual time course of events.
Diabetes | 2011
Melinda T. Coughlan; Felicia Y.T. Yap; David Tong; Sofianos Andrikopoulos; Anna Gasser; Vicki Thallas-Bonke; Diane E. Webster; Jun-ichi Miyazaki; Thomas W. H. Kay; Robyn Maree Slattery; David M. Kaye; Brian G. Drew; Bronwyn A. Kingwell; Spiros Fourlanos; Per-Henrik Groop; Leonard C. Harrison; Mikael Knip; Josephine M. Forbes
OBJECTIVE Excess accumulation of advanced glycation end products (AGEs) contributes to aging and chronic diseases. We aimed to obtain evidence that exposure to AGEs plays a role in the development of type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS The effect of AGEs was examined on insulin secretion by MIN6N8 cells and mouse islets and in vivo in three separate rodent models: AGE-injected or high AGE–fed Sprague-Dawley rats and nonobese diabetic (NODLt) mice. Rodents were also treated with the AGE-lowering agent alagebrium. RESULTS β-Cells exposed to AGEs displayed acute glucose-stimulated insulin secretory defects, mitochondrial abnormalities including excess superoxide generation, a decline in ATP content, loss of MnSOD activity, reduced calcium flux, and increased glucose uptake, all of which were improved with alagebrium treatment or with MnSOD adenoviral overexpression. Isolated mouse islets exposed to AGEs had decreased glucose-stimulated insulin secretion, increased mitochondrial superoxide production, and depletion of ATP content, which were improved with alagebrium or with MnTBAP, an SOD mimetic. In rats, transient or chronic exposure to AGEs caused progressive insulin secretory defects, superoxide generation, and β-cell death, ameliorated with alagebrium. NODLt mice had increased circulating AGEs in association with an increase in islet mitochondrial superoxide generation, which was prevented by alagebrium, which also reduced the incidence of autoimmune diabetes. Finally, at-risk children who progressed to T1D had higher AGE concentrations than matched nonprogressors. CONCLUSIONS These findings demonstrate that AGEs directly cause insulin secretory defects, most likely by impairing mitochondrial function, which may contribute to the development of T1D.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Emma E. Hamilton-Williams; Stephanie Palmer; Brett Charlton; Robyn Maree Slattery
Type 1 diabetes occurs as a result of an autoimmune attack on the insulin-producing beta cells. Although CD8 T cells have been implicated both early and late in this process, the requirement for direct interaction between these cells and MHC class I on the beta cells has not been demonstrated. By using nonobese diabetic mice lacking beta cell class I expression, we show that both initiation and progression of insulitis proceeds unperturbed. However, without beta cell class I expression, the vast majority of these mice do not develop hyperglycemia. These findings demonstrate that a direct interaction between CD8 T cells and beta cells is not required for initiation or early disease progression. The requirement for class I on beta cells is a relatively late checkpoint in the development of diabetes.
Journal of Immunology | 2004
David V. Serreze; T. Matthew Holl; Michele P. Marron; Robert T. Graser; Ellis A. Johnson; Caroline Morgane Choisy-Rossi; Robyn Maree Slattery; Scott M. Lieberman; Teresa P. DiLorenzo
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1D development. However, it was unknown whether the development of diabetogenic CD8 T cells could also be dominantly inhibited by particular MHC variants. We addressed this issue by crossing NOD mice transgenically expressing the TCR from the diabetogenic CD8 T cell clone AI4 with NOD stocks congenic for MHC haplotypes that dominantly inhibit T1D. High numbers of functional AI4 T cells only developed in controls homozygously expressing NOD-derived H2g7 molecules. In contrast, heterozygous expression of some MHC haplotypes conferring T1D resistance anergized AI4 T cells through decreased TCR (H2b) or CD8 expression (H2q). Most interestingly, while AI4 T cells exert a class I-restricted effector function, H2nb1 MHC class II molecules can contribute to their negative selection. These findings provide insights to how particular MHC class I and class II variants interactively regulate the development of diabetogenic T cells and the TCR promiscuity of such autoreactive effectors.
Clinical Science | 2014
Abhirup Jayasimhan; Kristy P Mansour; Robyn Maree Slattery
T1D (Type 1 diabetes) is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Studies in T1D patients have been limited by the availability of pancreatic samples, a protracted pre-diabetic phase and limitations in markers that reflect β-cell mass and function. The NOD (non-obese diabetic) mouse is currently the best available animal model of T1D, since it develops disease spontaneously and shares many genetic and immunopathogenic features with human T1D. Consequently, the NOD mouse has been extensively studied and has made a tremendous contribution to our understanding of human T1D. The present review summarizes the key lessons from NOD mouse studies concerning the genetic susceptibility, aetiology and immunopathogenic mechanisms that contribute to autoimmune destruction of β-cells. Finally, we summarize the potential and limitations of immunotherapeutic strategies, successful in NOD mice, now being trialled in T1D patients and individuals at risk of developing T1D.
Annals of the New York Academy of Sciences | 2006
Nikolai Petrovsky; Diego G Silva; Luis Socha; Robyn Maree Slattery; Brett Charlton
Abstract: Fas ligand (FasL), a type 2 membrane protein belonging to the TNF family, plays an important role in the induction of cell death. Ligation of Fas receptors by FasL results in apoptosis of the Fas‐expressing cell. Autoimmune diabetes results from β cell destruction by islet‐reactive T cells, a process that involves β cell apoptosis. This raises the question of whether the FasL‐Fas pathway plays a major role in β cell death. To address this issue it is important to know whether β cells express Fas and/or FasL and, if so, whether induction of these molecules leads to β cell death. In fact, both Fas and FasL have been demonstrated to be expressed by β cells in response to cytokine stimulation, although there remains an argument in the literature as to whether β cells truly express FasL. This is largely because FasL expression has only been demonstrable by immunohistochemistry and not by flow cytometry. Transgenic NOD mice with β cells expressing a FasL transgene develop an accelerated form of diabetes. We show here that β cells from FasL transgenic NOD mice are more susceptible to cytokine‐induced apoptosis than wild‐type β cells, consistent with the hypothesis that if β cells express FasL then Fas‐FasL interaction on the β cell surface is able to mediate β cell self‐death in the absence of T cells. Interventions that block the Fas‐FasL pathway may be useful, therefore, in the prevention or treatment of type 1 diabetes.
Diabetologia | 2011
Josephine M. Forbes; Jenny Söderlund; Felicia Y.T. Yap; Mikael Knip; Sofianos Andrikopoulos; Jorma Ilonen; Olli Simell; Riitta Veijola; Karly C. Sourris; Melinda T. Coughlan; Carol Forsblom; Robyn Maree Slattery; Shane T. Grey; Maija Wessman; Hiroshi Yamamoto; Angelika Bierhaus; Mark E. Cooper; Per-Henrik Groop
Aims/hypothesisThis group of studies examines human genetic susceptibility conferred by the receptor for advanced glycation end-products (RAGE) in type 1 diabetes and investigates how this may interact with a western environment.MethodsWe analysed the AGER gene, using 13 tag SNPs, in 3,624 Finnish individuals from the FinnDiane study, followed by AGER associations with a high risk HLA genotype (DR3)-DQA1*05-DQB1*02/DRB1*0401-DQB1*0302 (n = 546; HLA-DR3/DR4), matched in healthy newborn infants from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study (n = 373) using allelic analysis. We also studied islets and circulating RAGE in NODLt mice.ResultsThe rs2070600 and rs17493811 polymorphisms predicted increased risk of type 1 diabetes, whereas the rs9469089 SNP was related to decreased risk, on a high risk HLA background. Children from the DIPP study also showed a decline in circulating soluble RAGE levels, at seroconversion to positivity for type 1 diabetes-associated autoantibodies. Islet RAGE and circulating soluble RAGE levels in prediabetic NODLt mice decreased over time and were prevented by the AGE lowering therapy alagebrium chloride. Alagebrium chloride also decreased the incidence of autoimmune diabetes and restored islet RAGE levels.Conclusions/interpretationThese studies suggest that inherited AGER gene polymorphisms may confer susceptibility to environmental insults. Declining circulating levels of soluble RAGE, before the development of overt diabetes, may also be predictive of clinical disease in children with high to medium risk HLA II backgrounds and this possibility warrants further investigation in a larger cohort.
Proceedings of the National Academy of Sciences of the United States of America | 2007
James de Jersey; Sarah Louise Snelgrove; Stephanie E. Palmer; Simon A. Teteris; Arno Müllbacher; Jacques F. A. P. Miller; Robyn Maree Slattery
Type 1 diabetes (T1D) is caused by the destruction of insulin-producing islet β cells. CD8 T cells are prevalent in the islets of T1D patients and are the major effectors of β cell destruction in nonobese diabetic (NOD) mice. In addition to their critical involvement in the late stages of diabetes, CD8 T cells are implicated in the initiation of disease. NOD mice, in which the β2-microglobulin gene has been inactivated by gene targeting (NOD.β2M−/−), have a deficiency in CD8 T cells and do not develop insulitis, which suggests that CD8 T cells are required for the initiation of T1D. However, neither in humans nor in NOD mice have the immunological requirements for diabetogenic CD8 T cells been precisely defined. In particular, it is not known in which cell type MHC class I expression is required for recruitment and activation of CD8 T cells. Here we have generated transgenic NOD mice, which lack MHC class I on mature professional antigen-presenting cells (pAPCs). These “class I APC-bald” mice developed periislet insulitis but not invasive intraislet insulitis, and they never became diabetic. Recruitment to the islet milieu does not therefore require cognate interaction between CD8 T cells and MHC class I on mature pAPCs. Conversely, such an interaction is critically essential to allow the crucial shift from periislet insulitis to invasive insulitis. Importantly, our findings demonstrate unequivocally that CD8 T cells cannot be primed to become diabetogenic by islet β cells alone.
American Journal of Pathology | 2011
Kate L. Graham; Balasubramanian Krishnamurthy; Stacey Fynch; Zia U. Mollah; Robyn Maree Slattery; Pere Santamaria; Thomas W. H. Kay; Helen E. Thomas
Cytotoxic T lymphocytes (CTLs) that cause type 1 diabetes are activated in draining lymph nodes and become concentrated as fully active CTLs in inflamed pancreatic islets. It is unclear whether CTL function is driven by signals received in the lymph node or also in the inflamed tissue. We studied whether the development of cytotoxicity requires further activation in islets. Autoreactive CTLs found in the islets of diabetes-prone NOD mice had acquired much higher expression of the cytotoxic effector markers granzyme B, interferon γ, and CD107a than had those in the pancreatic lymph node (PLN). Increased expression seemed to result from stimulation in the islet itself. T cells held up from migrating from the PLN by administration of the sphingosine-1-phosphate agonist FTY720 did not increase expression of cytotoxic molecules in the PLN. Stimulation did not require antigen presentation or cytokine secretion by the target β cells because it was not affected by the absence of class I major histocompatibility complex expression or by the overexpression of suppressor of cytokine signaling-1. Activation of CD40-expressing cells stimulated increased CTL function and β-cell destruction, suggesting that signals derived from CD40-expressing cells promote the acquisition of cytotoxicity in the islet environment. These data provide in vivo evidence that stimulation of cytotoxic effector molecule expression occurs in inflamed islets and is independent of β cells.
European Journal of Immunology | 2012
Kate L. Graham; Balasubramanian Krishnamurthy; Stacey Fynch; Rochelle Ayala-Perez; Robyn Maree Slattery; Pere Santamaria; Helen E. Thomas; Thomas W. H. Kay
Infiltration of pancreatic islets by immune cells, termed insulitis, increases progressively once it begins and leads to clinical type 1 diabetes. But even after diagnosis some islets remain unaffected and infiltration is patchy rather than uniform. Traffic of autoreactive T cells into the pancreas is likely to contribute to insulitis progression but it could also depend on T‐cell proliferation within islets. This study utilizes transgenic NOD mice to assess the relative contributions of these two mechanisms. Progression of insulitis in NOD8.3 TCR transgenic mice was mildly reduced by inhibition of T‐cell migration with the drug FTY720. In FTY720‐treated mice, reduced beta cell MHC class I expression prevented progression of insulitis both within affected islets and to previously unaffected islets. CTL proliferation was significantly reduced in islets with reduced or absent beta cell expression of MHC class I protein. This indicates that intra‐islet proliferation, apparently dependent on beta cell antigen presentation, in addition to recruitment, is a significant factor in progression of insulitis.