Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rocco D. Gogliotti is active.

Publication


Featured researches published by Rocco D. Gogliotti.


Science | 1995

Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS.

William G. Rice; Jeffrey G. Supko; Louis Malspeis; Robert W. Buckheit; David J. Clanton; Ming Bu; Lisa Graham; Catherine A. Schaeffer; Jim A. Turpin; John M. Domagala; Rocco D. Gogliotti; John P. Bader; Susan M. Halliday; Lori V. Coren; Raymond C. Sowder; Larry O. Arthur; Louis E. Henderson

Strategies for the treatment of human immunodeficiency virus-type 1 (HIV-1) infection must contend with the obstacle of drug resistance. HIV-1 nucleocapsid protein zinc fingers are prime antiviral targets because they are mutationally intolerant and are required both for acute infection and virion assembly. Nontoxic disulfide-substituted benzamides were identified that attack the zinc fingers, inactivate cell-free virions, inhibit acute and chronic infections, and exhibit broad antiretroviral activity. The compounds were highly synergistic with other antiviral agents, and resistant mutants have not been detected. Zinc finger-reactive compounds may offer an anti-HIV strategy that restricts drug-resistance development.


Biological Psychiatry | 2013

Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity

Jerri M. Rook; Meredith J. Noetzel; Wendy A. Pouliot; Thomas M. Bridges; Paige N. Vinson; Hyekyung P. Cho; Ya Zhou; Rocco D. Gogliotti; Jason Manka; Karen J. Gregory; Shaun R. Stauffer; F. Edward Dudek; Zixiu Xiang; Colleen M. Niswender; J. Scott Daniels; Carrie K. Jones; Craig W. Lindsley; P. Jeffrey Conn

BACKGROUND Metabotropic glutamate receptor subtype 5 (mGlu5) activators have emerged as a novel approach to the treatment of schizophrenia. Positive allosteric modulators (PAMs) of mGlu5 have generated tremendous excitement and fueled major drug discovery efforts. Although mGlu5 PAMs have robust efficacy in preclinical models of schizophrenia, preliminary reports suggest that these compounds may induce seizure activity. Prototypical mGlu5 PAMs do not activate mGlu5 directly but selectively potentiate activation of mGlu5 by glutamate. This mechanism may be critical to maintaining normal activity-dependence of mGlu5 activation and achieving optimal in vivo effects. METHODS Using specially engineered mGlu5 cell lines incorporating point mutations within the allosteric and orthosteric binding sites, as well as brain slice electrophysiology and in vivo electroencephalography and behavioral pharmacology, we found that some mGlu5 PAMs have intrinsic allosteric agonist activity in the absence of glutamate. RESULTS Both in vitro mutagenesis and in vivo pharmacology studies demonstrate that VU0422465 is an agonist PAM that induces epileptiform activity and behavioral convulsions in rodents. In contrast, VU0361747, an mGlu5 PAMs optimized to eliminate allosteric agonist activity, has robust in vivo efficacy and does not induce adverse effects at doses that yield high brain concentrations. CONCLUSIONS Loss of the absolute dependence of mGlu5 PAMs on glutamate release for their activity can lead to severe adverse effects. The finding that closely related mGlu5 PAMs can differ in their intrinsic agonist activity provides critical new insights that is essential for advancing these molecules through clinical development for treatment of schizophrenia.


Journal of Medicinal Chemistry | 2011

Discovery, synthesis, and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model.

Carrie K. Jones; Darren W. Engers; Analisa D. Thompson; Julie R. Field; Anna L. Blobaum; Stacey R. Lindsley; Ya Zhou; Rocco D. Gogliotti; Satyawan Jadhav; Rocio Zamorano; Jim Bogenpohl; Yoland Smith; Ryan D. Morrison; J. Scott Daniels; C. David Weaver; P. Jeffrey Conn; Craig W. Lindsley; Colleen M. Niswender; Corey R. Hopkins

There is an increasing amount of literature data showing the positive effects on preclinical antiparkinsonian rodent models with selective positive allosteric modulators of metabotropic glutamate receptor 4 (mGlu(4)). However, most of the data generated utilize compounds that have not been optimized for druglike properties, and as a consequence, they exhibit poor pharmacokinetic properties and thus do not cross the blood-brain barrier. Herein, we report on a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides with improved PK properties with excellent potency and selectivity as well as improved brain exposure in rodents. Finally, ML182 was shown to be orally active in the haloperidol induced catalepsy model, a well-established antiparkinsonian model.


Journal of Medicinal Chemistry | 2014

High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein–Protein Interaction

Shihan He; Timothy J. Senter; Jonathan Pollock; Changho Han; Sunil K. Upadhyay; Trupta Purohit; Rocco D. Gogliotti; Craig W. Lindsley; Tomasz Cierpicki; Shaun R. Stauffer; Jolanta Grembecka

The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ∼288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interaction with IC50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.


PLOS ONE | 2013

Eliciting Renal Failure in Mosquitoes with a Small- Molecule Inhibitor of Inward-Rectifying Potassium Channels

Rene Raphemot; Matthew F. Rouhier; Corey R. Hopkins; Rocco D. Gogliotti; Kimberly M. Lovell; Rebecca M. Hine; Dhairyasheel Ghosalkar; Anthony Longo; Klaus W. Beyenbach; Jerod S. Denton; Peter M. Piermarini

Mosquito-borne diseases such as malaria and dengue fever take a large toll on global health. The primary chemical agents used for controlling mosquitoes are insecticides that target the nervous system. However, the emergence of resistance in mosquito populations is reducing the efficacy of available insecticides. The development of new insecticides is therefore urgent. Here we show that VU573, a small-molecule inhibitor of mammalian inward-rectifying potassium (Kir) channels, inhibits a Kir channel cloned from the renal (Malpighian) tubules of Aedes aegypti (AeKir1). Injection of VU573 into the hemolymph of adult female mosquitoes (Ae. aegypti) disrupts the production and excretion of urine in a manner consistent with channel block of AeKir1 and renders the mosquitoes incapacitated (flightless or dead) within 24 hours. Moreover, the toxicity of VU573 in mosquitoes (Ae. aegypti) is exacerbated when hemolymph potassium levels are elevated, suggesting that Kir channels are essential for maintenance of whole-animal potassium homeostasis. Our study demonstrates that renal failure is a promising mechanism of action for killing mosquitoes, and motivates the discovery of selective small-molecule inhibitors of mosquito Kir channels for use as insecticides.


Drug Metabolism and Disposition | 2013

Biotransformation of a Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Contributes to Seizure-Like Adverse Events in Rats Involving a Receptor Agonism-Dependent Mechanism

Thomas M. Bridges; Jerri M. Rook; Meredith J. Noetzel; Ryan D. Morrison; Ya Zhou; Rocco D. Gogliotti; Paige N. Vinson; Zixiu Xiang; Carrie K. Jones; Colleen M. Niswender; Craig W. Lindsley; Shaun R. Stauffer; P. Jeffrey Conn; J. Scott Daniels

Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.


Frontiers in Pharmacology | 2011

Discovery, Characterization, and Structure–Activity Relationships of an Inhibitor of Inward Rectifier Potassium (Kir) Channels with Preference for Kir2.3, Kir3.X, and Kir7.1

Rene Raphemot; Daniel Lonergan; Thuy T. Nguyen; Thomas J. Utley; L. Michelle Lewis; Rishin J. Kadakia; C. David Weaver; Rocco D. Gogliotti; Corey R. Hopkins; Craig W. Lindsley; Jerod S. Denton

The inward rectifier family of potassium (Kir) channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue, or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that G protein-coupled inward rectifier K (GIRK) channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl+) flux-based high-throughput screen of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC50 = 1.9 and 19 μM, respectively) and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK) and Kir3.1/3.4 (cardiac GIRK) channels with equal potency and preferentially inhibited GIRK, Kir2.3, and Kir7.1 over Kir1.1 and Kir2.1.Tl+ flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure–activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure–function relationships of these Kir channels.


Journal of Medicinal Chemistry | 2013

Exploration of Allosteric Agonism Structure–Activity Relationships within an Acetylene Series of Metabotropic Glutamate Receptor 5 (mGlu5) Positive Allosteric Modulators (PAMs): Discovery of 5-((3-Fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254)

Mark Turlington; Meredith J. Noetzel; Aspen Chun; Ya Zhou; Rocco D. Gogliotti; Elizabeth Dong Nguyen; Karen J. Gregory; Paige N. Vinson; Jerri M. Rook; Kiran K. Gogi; Zixiu Xiang; Thomas M. Bridges; J. Scott Daniels; Carrie K. Jones; Colleen M. Niswender; Jens Meiler; P. Jeffrey Conn; Craig W. Lindsley; Shaun R. Stauffer

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~ 3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs.


Bioorganic & Medicinal Chemistry Letters | 2012

Continued optimization of the MLPCN probe ML071 into highly potent agonists of the hM1 muscarinic acetylcholine receptor.

Bruce J. Melancon; Rocco D. Gogliotti; James C. Tarr; Sam Saleh; Brian A. Chauder; Evan P. Lebois; Hyekyung P. Cho; Thomas J. Utley; Douglas J. Sheffler; Thomas M. Bridges; Ryan D. Morrison; J. Scott Daniels; Colleen M. Niswender; P. Jeffrey Conn; Craig W. Lindsley; Michael R. Wood

This Letter describes the continued optimization of the MLPCN probe molecule ML071. After introducing numerous cyclic constraints and novel substitutions throughout the parent structure, we produced a number of more highly potent agonists of the M(1) mACh receptor. While many novel agonists demonstrated a promising ability to increase soluble APPα release, further characterization indicated they may be functioning as bitopic agonists. These results and the implications of a bitopic mode of action are presented.


ACS Chemical Neuroscience | 2016

Discovery, Synthesis, and Preclinical Characterization of N-(3-Chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506), a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu4)

Darren W. Engers; Anna L. Blobaum; Rocco D. Gogliotti; Yiu Yin Cheung; James M. Salovich; Pedro M. Garcia-Barrantes; J. Scott Daniels; Ryan D. Morrison; Carrie K. Jones; Matthew G. Soars; Xiaoliang Zhuo; Jeremy Hurley; John E. Macor; Joanne J. Bronson; P. Jeffrey Conn; Craig W. Lindsley; Colleen M. Niswender; Corey R. Hopkins

The efficacy of positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 4 (mGlu4) in preclinical rodent models of Parkinsons disease has been established by a number of groups. Here, we report an advanced preclinically characterized mGlu4 PAM, N-(3-chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506). We detail the discovery of VU0418506 starting from a common picolinamide core scaffold and evaluation of a number of amide bioisosteres leading to the novel pyrazolo[4,3-b]pyridine head group. VU0418506 has been characterized as a potent and selective mGlu4 PAM with suitable in vivo pharmacokinetic properties in three preclinical safety species.

Collaboration


Dive into the Rocco D. Gogliotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig W. Lindsley

Office of Technology Transfer

View shared research outputs
Top Co-Authors

Avatar

J. Scott Daniels

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan D. Morrison

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ya Zhou

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge