Rocky Lai
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rocky Lai.
Clinical & Developmental Immunology | 2012
Christopher R. Shaler; Carly Horvath; Rocky Lai; Zhou Xing
Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.
Mucosal Immunology | 2013
Mangalakumari Jeyanathan; Daniela Damjanovic; Christopher R. Shaler; Rocky Lai; M Wortzman; C Yin; Anna Zganiacz; Brian D. Lichty; Zhou Xing
Homologous and heterologous parenteral prime–mucosal boost immunizations have shown great promise in combating mucosal infections such as tuberculosis and AIDS. However, their immune mechanisms remain poorly defined. In particular, it is still unclear whether T-cell and innate immunity may be independently affected by these immunization modalities and how it impacts immune protective outcome. Using two virus-based tuberculosis vaccines (adenovirus (Ad) and vesicular stomatitis virus (VSV) vectors), we found that while both homologous (Ad/Ad) and heterologous (Ad/VSV) respiratory mucosal boost immunizations elicited similar T-cell responses in the lung, they led to drastically different immune protective outcomes. Compared with Ad-based boosting, VSV-based boosting resulted in poorly enhanced protection against tuberculosis. Such inferior protection was associated with differentially imprinted innate phagocytes, particularly the CD11c+CD11b+/− cells, in the lung. We identified heightened type 1 interferon (IFN) responses to be the triggering mechanism. Thus, increased IFN-β severely blunted interleukin-12 responses in infected phagocytes, which in turn impaired their nitric oxide production and antimycobacterial activities. Our study reveals that vaccine vectors may differentially imprint innate cells at the mucosal site of immunization, which can impact immune-protective outcome, independent of T-cell immunity, and it is of importance to determine both T-cell and innate cell immunity in vaccine studies.
Mucosal Immunology | 2014
Mangalakumari Jeyanathan; Sarah McCormick; Rocky Lai; Sam Afkhami; Christopher R. Shaler; Carly Horvath; Daniela Damjanovic; Anna Zganiacz; Nicole G. Barra; Ali A. Ashkar; Manel Jordana; Naoko Aoki; Zhou Xing
Interaction of mycobacteria with the host leads to retarded expression of T helper cell type 1 (Th1) immunity in the lung. However, the immune mechanisms remain poorly understood. Using in vivo and in vitro models of Mycobacterium tuberculosis (M. tb) infection, we find the immunoadaptor DAP12 (DNAX-activating protein of 12 kDa) in antigen-presenting cells (APCs) to be critically involved in this process. Upon infection of APCs, DAP12 is required for IRAK-M (interleukin-1 receptor-associated kinase M) expression, which in turn induces interleukin-10 (IL-10) and an immune-suppressed phenotype of APCs, thus leading to suppressed Th1 cell activation. Lack of DAP12 reduces APC IL-10 production and increases their Th1 cell-activating capability, resulting in expedited Th1 responses and enhanced protection. On the other hand, adoptively transferred DAP12-competent APCs suppress Th1 cell activation within DAP12-deficient hosts, and blockade of IL-10 aborts the ability of DAP12-competent APCs to suppress Th1 activation. Our study identifies the DAP12/IRAK-M/IL-10 to be a novel molecular pathway in APCs exploited by mycobacterial pathogens, allowing infection a foothold in the lung.
Mucosal Immunology | 2015
Mangalakumari Jeyanathan; Niroshan Thanthrige-Don; Sam Afkhami; Rocky Lai; Daniela Damjanovic; Anna Zganiacz; Xueya Feng; X-D Yao; Kenneth L. Rosenthal; M Fe Medina; J. Gauldie; Hildegund C.J. Ertl; Zhou Xing
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette–Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
European Journal of Immunology | 2014
Rocky Lai; Mangalakumari Jeyanathan; Christopher R. Shaler; Daniela Damjanovic; Amandeep Khera; Carly Horvath; Ali A. Ashkar; Zhou Xing
The immune mechanisms underlying delayed induction of Th1‐type immunity in the lungs following pulmonary mycobacterial infection remain poorly understood. We have herein investigated the underlying immune mechanisms for such delayed responses and whether a selected innate immune‐modulating strategy can accelerate Th1‐type responses. We have found that, in the early stage of pulmonary infection with attenuated Mycobacterium tuberculosis (M.tb H37Ra), the levels of infection in the lung continue to increase logarithmically until days 14 and 21 postinfection in C57BL/6 mice. The activation of innate immune responses, particularly DCs, in the lung is delayed. This results in a delay in the subsequent downstream immune responses including the migration of antigen‐bearing DCs to the draining lymph node (dLN), the Th1‐cell priming in dLN, and the recruitment of Th1 cells to the lung. However, single lung mucosal exposure to the TLR agonist FimH postinfection is able to accelerate protective Th1‐type immunity via facilitating DC migration to the lung and draining lymph nodes, enhancing DC antigen presentation and Th1‐cell priming. These findings hold implications for the development of immunotherapeutic and vaccination strategies and suggest that enhancement of early innate immune activation is a viable option for improving Th1‐type immunity against pulmonary mycobacterial diseases.
The Journal of Pathology | 2016
Ehab Ayaub; Philipp Kolb; Zahraa Mohammed-Ali; Victor Tat; James Murphy; Pierre-Simon Bellaye; Chiko Shimbori; Felix Boivin; Rocky Lai; Edward G Lynn; Šárka Lhoták; Darren Bridgewater; Martin Kolb; Mark D. Inman; Jeffrey G. Dickhout; Richard C. Austin; Kjetil Ask
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been associated with fibrotic lung disease, although exactly how they modulate this process remains unclear. Here we investigated the role of GRP78, the main UPR regulator, in an experimental model of lung injury and fibrosis. Grp78+/−, Chop−/− and wild type C57BL6/J mice were exposed to bleomycin by oropharyngeal intubation and lungs were examined at days 7 and 21. We demonstrate here that Grp78+/− mice were strongly protected from bleomycin‐induced fibrosis, as shown by immunohistochemical analysis, collagen content and lung function measurements. In the inflammatory phase of this model, a reduced number of lung macrophages associated with an increased number of TUNEL‐positive cells were observed in Grp78+/− mice. Dual immunohistochemical and in situ hybridization experiments showed that the macrophage population from the protected Grp78+/− mice was also strongly positive for cleaved caspase‐3 and Chop mRNA, respectively. In contrast, the administration of bleomycin to Chop−/− mice resulted in increased quasi‐static elastance and extracellular matrix deposition associated with an increased number of parenchymal arginase‐1‐positive macrophages that were negative for cleaved caspase‐3. The data presented indicate that the UPR is activated in fibrotic lung tissue and strongly localized to macrophages. GRP78‐ and CHOP‐mediated macrophage apoptosis was found to protect against bleomycin‐induced fibrosis. Overall, we demonstrate here that the fibrotic response to bleomycin is dependent on GRP78‐mediated events and provides evidence that macrophage polarization and apoptosis may play a role in this process. Copyright
European Respiratory Review | 2015
Rocky Lai; Sam Afkhami; Siamak Haddadi; Mangalakumari Jeyanathan; Zhou Xing
Despite the use of bacille Calmette–Guérin (BCG) for almost a century, pulmonary tuberculosis (TB) continues to be a serious global health concern. Therefore, there has been a pressing need for the development of new booster vaccines to enhance existing BCG-induced immunity. Protection following mucosal intranasal immunisation with AdHu5Ag85A is associated with the localisation of antigen-specific T-cells to the lung airway. However, parenteral intramuscular immunisation is unable to provide protection despite the apparent presence of antigen-specific T-cells in the lung interstitium. Recent advances in intravascular staining have allowed us to reassess the previously established T-cell distribution profile and its relationship with the observed differential protection. Respiratory mucosal immunisation empowers T-cells to home to both the lung interstitium and the airway lumen, whereas intramuscular immunisation-activated T-cells are largely trapped within the pulmonary vasculature, unable to populate the lung interstitium and airway. Given the mounting evidence supporting the safety and enhanced efficacy of respiratory mucosal immunisation over the traditional parenteral immunisation route, a greater effort should be made to clinically develop respiratory mucosal-deliverable TB vaccines. Immunisation route determines TB vaccine efficacy based on whether T-cells can enter restricted lung mucosal sites http://ow.ly/M0shT
Journal of Immunology | 2017
Mangalakumari Jeyanathan; Sam Afkhami; Amandeep Khera; Talveer S. Mandur; Daniela Damjanovic; Yushi Yao; Rocky Lai; Siamak Haddadi; Anna Dvorkin-Gheva; Manel Jordana; Steven L. Kunkel; Zhou Xing
Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.
The Journal of Infectious Diseases | 2017
Yushi Yao; Rocky Lai; Sam Afkhami; Siamak Haddadi; Anna Zganiacz; Fatemeh Vahedi; Ali A. Ashkar; Charu Kaushic; Mangalakumari Jeyanathan; Zhou Xing
Background The translation of preclinically promising novel tuberculosis vaccines to ultimate human applications has been challenged by the lack of animal models with an immune system equivalent to the human immune system in its genetic diversity and level of susceptibility to tuberculosis. Methods We have developed a humanized mice (Hu-mice) tuberculosis model system to investigate the clinical relevance of a novel virus-vectored (VV) tuberculosis vaccine administered via respiratory mucosal or parenteral route. Results We find that VV vaccine activates T cells in Hu-mice as it does in human vaccinees. The respiratory mucosal route for delivery of VV vaccine in Hu-mice, but not the parenteral route, significantly reduces the humanlike lung tuberculosis outcomes in a human T-cell-dependent manner. Conclusions Our results suggest that the Hu-mouse can be used to predict the protective efficacy of novel tuberculosis vaccines/strategies before they proceed to large, expensive human trials. This new vaccine testing system will facilitate the global pace of clinical tuberculosis vaccine development.
PLOS ONE | 2015
Daniela Damjanovic; Amandeep Khera; Sam Afkhami; Rocky Lai; Anna Zganiacz; Mangalakumari Jeyanathan; Zhou Xing
Tuberculosis (TB) remains a global pandemic despite the use of Bacillus Calmette-Guérin (BCG) vaccine, partly because BCG fails to effectively control adult pulmonary TB. The introduction of novel boost vaccines such as the human Adenovirus 5-vectored AdHu5Ag85A could improve and prolong the protective immunity of BCG immunization. Age at which BCG immunization is implemented varies greatly worldwide, and research is ongoing to discover the optimal stage during childhood to administer the vaccine, as well as when to boost the immune response with potential novel vaccines. Using a murine model of subcutaneous BCG immunization followed by intranasal AdHu5Ag85A boosting, we investigated the impact of age at BCG immunization on protective efficacy of BCG prime and AdHu5Ag85A boost immunization-mediated protection. Our results showed that age at parenteral BCG priming has limited impact on the efficacy of BCG prime-AdHu5Ag85A respiratory mucosal boost immunization-enhanced protection. However, when BCG immunization was delayed until the maturity of the immune system, longer sustained memory T cells were generated and resulted in enhanced boosting effect on T cells of AdHu5Ag85A respiratory mucosal immunization. Our findings hold implications for the design of new TB immunization protocols for humans.