Rodney B. Luwor
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodney B. Luwor.
Journal of Clinical Neuroscience | 2009
Hui K. Gan; Andrew H. Kaye; Rodney B. Luwor
Glioblastoma multiforme (GBM) is the most common brain tumour and has the worst prognosis. Epidermal growth factor receptor (EGFR) gene amplification, mutation and re-arrangement (all of which enhance tumour growth, survival, progression and resistance to therapy) are frequently observed in primary GBM. The most common EGFR variant in GBM, the EGFRvIII, is characterised by a deletion of 267 amino acids in the extracellular domain, leading to a receptor which is unable to bind ligand yet is constitutively active. Together with its impaired internalisation and degradation, the EGFRvIII enhances the tumourigenic potential of GBM by activating and sustaining mitogenic, anti-apoptotic and pro-invasive signalling pathways. This EGFRvIII-mediated enhanced tumourigenicity combined with the lack of EGFRvIII expression in normal tissue makes it an ideal candidate for targeted therapy. This review summarizes the current knowledge about the role of EGFRvIII in GBM and discusses therapeutic agents targeting EGFRvIII that are being evaluated as treatments for GBM.
Cancer Research | 2007
Yang Lu; Xinqun Li; Ke Liang; Rodney B. Luwor; Zahid H. Siddik; Gordon B. Mills; John Mendelsohn; Zhen Fan
Cetuximab is an epidermal growth factor receptor (EGFR)-blocking antibody that has been approved for treatment of patients with metastatic colorectal cancer. In this study, we investigated biochemical changes in signaling pathways of a cetuximab-resistant subline of DiFi colorectal cancer cells (DiFi5) that was developed by exposing the parental sensitive cells to subeffective doses of cetuximab over an extended period of time. Compared with parental DiFi cells that express high levels of EGFR and in which cetuximab induces apoptosis, the cetuximab-resistant DiFi5 cells showed markedly lower protein levels of EGFR, an increased association of EGFR with Cbl, and an increased ubiquitination of EGFR. DiFi5 cells also had a markedly higher level of Src-Y416 phosphorylation both at baseline and on EGF stimulation. Although EGFR levels were low, DiFi5 cells responded to EGF stimulation with robust phosphorylation of EGFR on Y845 and strong phosphorylation of Akt and extracellular signal-regulated kinase, comparable to those of parental cells. Most importantly, inhibition of Src kinase activity with PP2 reversed the resistance of DiFi5 cells to cetuximab-induced apoptosis without affecting the levels of EGFR in the cells. Our results indicate that colorectal cancer cells may develop acquired resistance to cetuximab via altering EGFR levels through promotion of EGFR ubiquitination and degradation and using Src kinase-mediated cell signaling to bypass their dependency on EGFR for cell growth and survival.
Clinical Cancer Research | 2005
Rushika M. Perera; Yoshitaka Narita; Frank Furnari; Hui K. Gan; Carmel Murone; Marika Ahlkvist; Rodney B. Luwor; Antony W. Burgess; Elisabeth Stockert; Achim A. Jungbluth; Lloyd J. Old; Webster K. Cavenee; Andrew M. Scott; Terrance G. Johns
Monoclonal antibody (mAb) 806 is a novel epidermal growth factor receptor (EGFR) antibody with significant antitumor activity that recognizes a mutant EGFR commonly expressed in glioma known as delta2-7 EGFR (de2-7 EGFR or EGFRvIII) and a subset of the wild-type (wt) EGFR found in cells that overexpress the receptor. We have used two human xenograft mouse models to examine the efficacy of mAb 806 in combination with mAb 528, a prototypical anti-EGFR antibody with similar specificity to cetuximab. Treatment of nude mice, bearing s.c. or i.c. tumor human xenografts expressing the wt or de2-7 EGFR, with mAbs 806 and 528 in combination resulted in additive and in some cases synergistic, antitumor activity. Interestingly, mAb 528 was also effective against xenografts expressing the ligand independent de2-7 EGFR when used as a single agent, showing that its antitumor activity is not merely mediated through inhibition of ligand binding. When used as single agents, neither mAbs 806 or 528 induced down-regulation of the de2-7 EGFR either in vitro or in vivo. In contrast, the combination of antibodies produced a rapid and dramatic decrease in the total cell surface de2-7 EGFR both in vitro and in xenografts. Consistent with this decrease in total cell surface de2-7 EGFR, we observed up-regulation of the cell cycle inhibitor p27KIP1 and a decrease in tumor cell proliferation as measured by Ki-67 immunostaining when the antibodies were used in combination in vivo. Thus, mAb 806 can synergize with other EGFR-specific antibodies thereby providing a rationale for its translation into the clinic.
Oncogene | 2005
Rodney B. Luwor; Yang Lu; Xinqun Li; John Mendelsohn; Zhen Fan
We have previously shown that the antiepidermal growth factor receptor monoclonal antibody cetuximab (C225; Erbitux), which was recently approved for the treatment of metastatic colorectal cancer, has antiangiogenic properties, inhibiting vascular endothelial growth factor (VEGF) secretion in culture and in animal models. Here, we have furthered the study by demonstrating that cetuximab reduces cellular levels of hypoxia-inducible factor-1 alpha (HIF-1α), a transcriptional regulator of VEGF expression, in A431 epidermoid carcinoma cells under both normoxic and hypoxic culture conditions. Expression of a constitutively active Ras in A431 cells rendered cellular resistance to the cetuximab-mediated reduction of the HIF-1α level. Cell lines with naturally occurring phosphatase and tensin homologue deleted on chromosome 10 mutations or deletions were also resistant to cetuximab-mediated reduction of the HIF-1α level. Pharmacologic inhibition of phosphatidylinositol 3-kinase with LY294002 reduced the HIF-1α level in both normoxic and hypoxic A431 cells, whereas inhibition of the mitogen-activated protein kinase kinase by PD98059 reduced the level of HIF-1α only in normoxic A431 cells. In addition, cetuximab reduced the cellular level of HIF-1α in the presence of a proteasome inhibitor, lactacystin, indicating that cetuximab acts mainly at the level of protein synthesis. The reduction of HIF-1α in response to cetuximab treatment was accompanied by transcriptional inhibition of VEGF expression, measured by a luciferase assay in A431 cells transfected with a vector containing the VEGF hypoxia response element. Taken together, our results indicate that the previously demonstrated inhibition of VEGF by cetuximab occurs at the level of transcription in response to a reduced level of HIF-1α and justify further testing of therapeutic strategies that combine cetuximab with approaches inhibiting the function of VEGF or the VEGF receptor.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Terrance G. Johns; Rodney B. Luwor; Carmel Murone; Francesca Walker; Janet Weinstock; Angela Vitali; Rushika M. Perera; Achim A. Jungbluth; Elisabeth Stockert; Lloyd J. Old; Edouard C. Nice; Antony W. Burgess; Andrew M. Scott
Blockade of epidermal growth factor receptor (EGFR) signaling with specific inhibitors of the EGFR tyrosine kinase retards cellular proliferation and arrests the growth of tumor xenografts. AG1478, an inhibitor of the EGFR tyrosine kinase, is used in laboratory studies; however, its therapeutic potential has not been elucidated. Therefore, we evaluated an aqueous form of AG1478 for its antitumor activity in mice bearing human xenografts expressing the WT EGFR or a naturally occurring ligand-independent truncation of the EGFR [delta2–7 (de2–7) EGFR or EGFRvIII]. Parenteral administration of soluble AG1478 blocked phosphorylation of the EGFR at the tumor site and inhibited the growth of A431 xenografts that overexpress the WT EGFR and glioma xenografts expressing the de2–7 EGFR. Strikingly, even subtherapeutic doses of AG1478 significantly enhanced the efficacy of cytotoxic drugs, with the combination of AG1478 and temozolomide displaying synergistic antitumor activity against human glioma xenografts. AG1478 was also examined in combination with mAb 806, an anti-EGFR antibody that was raised against the de2–7 EGFR but unexpectedly also binds a subset of the EGFR expressed in cells exhibiting amplification of the EGFR gene. The combination of AG1478 and mAb 806 displayed additive, and in some cases synergistic, antitumor activity against tumor xenografts overexpressing the EGFR. Here, we demonstrate that different classes of inhibitors to the EGFR can have synergistic antitumor activity in vivo. These results establish the antitumor efficacy of the EGFR inhibitor AG1478 and provide a rationale for its clinical evaluation in combination with both chemotherapy and other EGFR therapeutics.
PLOS ONE | 2012
Ardian Latifi; Rodney B. Luwor; Maree Bilandzic; Simon Nazaretian; Kaye L. Stenvers; Jan Pyman; Hong-Jian Zhu; Erik W. Thompson; Michael A. Quinn; Jock K. Findlay; Nuzhat Ahmed
Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12–14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.
Oncogene | 2004
Rodney B. Luwor; Hong-Jian Zhu; Francesca Walker; Angela Vitali; Rushika M. Perera; Antony W. Burgess; Andrew M. Scott; Terrance G. Johns
Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2–7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2–7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2–7 EGFR is constitutively active and imparts a significant in vivo growth advantage to glioma cells. In order to examine the signalling pathways activated by the de2–7 EGFR and its biological effects in an in vitro system, the de2–7 EGFR gene was transfected into the murine IL-3-dependent pro-B-cell line BaF/3. Expression of the de2–7 EGFR enhanced the survival of BaF/3 cells in the absence of IL-3 by reducing apoptosis in a phosphatidylinositol 3-kinase (PI3-K)-dependent manner. Interestingly, while de2–7 EGFR also enhanced proliferation of BaF/3 cells in low levels of IL-3, this effect was independent of PI3-K. Survival and proliferation were further enhanced when BaF/3 cells were cotransfected with the de2–7 and wt EGFR. This was due to heterodimerization between the de2–7 and wt EGFR leading to trans-phosphorylation of the wt EGFR. This observation is directly relevant to glioma where de2–7 and wt EGFR appear to be coexpressed. Thus, expression of de2–7 EGFR in BaF/3 cells provides an in vitro model for evaluating the signalling pathways activated by this receptor.
Oncogene | 2006
Xinqun Li; Rodney B. Luwor; Yiling Lu; Ke Liang; Zhen Fan
Mutational inactivation or deletion of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN)/MMAC1/TEP gene in human cancer cells leads to a constitutively active status of the phosphatidylinositol 3-kinase/Akt pathway in the cells and has been linked to the lack of responses of the cells to the epidermal growth factor (EGF) receptor-targeted therapeutics. Akt is strongly inhibited by perifosine, an orally active alkyl-lysophospholipid currently being evaluated as an anti-cancer agent in phase 1 and 2 clinical trials. To determine whether perifosine may enhance the antitumor activity of the anti-EGF receptor monoclonal antibody cetuximab/C225 in PTEN-deficient cancer cells, we exposed MDA468 breast cancer cells (which contain mutated PTEN gene) and PC3 prostate cancer cells (in which the PTEN gene is deleted) to perifosine and cetuximab, alone and in combination. Treatment of the cells with perifosine reduced baseline levels of phosphorylated Akt, phosphorylated p44/42 mitogen-activated protein kinase (MAPK) and p38MAPK, and increased baseline levels of phosphorylated stress-activated protein kinase (SAPK)/c-jun NH2-terminal kinase (JNK). A 72-h exposure of the MDA468 and PC3 cells to perifosine alone resulted in cell death in a dose-dependent manner, which was enhanced by cetuximab. Addition of subtoxic doses of perifosine to cetuximab treatment also enhanced the cetuximab-induced growth inhibition. The combination treatment enhanced the inhibition of phosphorylation of Akt, p44/42MAPK and p38MAPK, but offset the phosphorylation of SAPK/JNK that was activated by perifosine treatment alone. Taken together, the data showed that perifosine enhances the antitumor activity of cetuximab in PTEN-deficient cancer cells. Further evaluation of the combination treatment in preclinical and clinical studies is warranted.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Thomas P. J. Garrett; Anthony Wilks Burgess; Hui K. Gan; Rodney B. Luwor; Glenn A Cartwright; Francesca Walker; Suzanne G. Orchard; Andrew H. A. Clayton; Edouard C. Nice; Julie Rothacker; Bruno Catimel; Webster K. Cavenee; Lloyd J. Old; Elisabeth Stockert; Gerd Ritter; Timothy E. Adams; Peter A. Hoyne; Dane Wittrup; Ginger Chao; Jennifer R. Cochran; Cindy S. Luo; Mezhen Lou; Trevor Huyton; Yibin Xu; W. Douglas Fairlie; Shenggen Yao; Andrew M. Scott; Terrance G. Johns
Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR287–302 complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR. However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFRC271A/C283A mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFRC271A/C283A. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.
Nature Communications | 2014
FangFang Zhou; Yvette Drabsch; Tim J. A. Dekker; Amaya Garcia de Vinuesa; Yihao Li; Lukas J.A.C. Hawinkels; Kelly-Ann Sheppard; Marie-José Goumans; Rodney B. Luwor; Carlie J.M. de Vries; Wilma E. Mesker; Rob A. E. M. Tollenaar; Peter Devilee; Chris Lu; Hong-Jian Zhu; Long Zhang; Peter ten Dijke
In advanced cancers, the TGF-β pathway acts as an oncogenic factor and is considered to be a therapeutic target. Here using a genome-wide cDNA screen, we identify nuclear receptor NR4A1 as a strong activator of TGF-β signalling. NR4A1 promotes TGF-β/SMAD signalling by facilitating AXIN2-RNF12/ARKADIA-induced SMAD7 degradation. NR4A1 interacts with SMAD7 and AXIN2, and potently and directly induces AXIN2 expression. Whereas loss of NR4A1 inhibits TGF-β-induced epithelial-to-mesenchymal transition and metastasis, slight NR4A1 ectopic expression stimulates metastasis in a TGF-β-dependent manner. Importantly, inflammatory cytokines potently induce NR4A1 expression, and potentiate TGF-β-mediated breast cancer cell migration, invasion and metastasis in vitro and in vivo. Notably, NR4A1 expression is elevated in breast cancer patients with high immune infiltration and its expression weakly correlates with phosphorylated SMAD2 levels, and is an indicator of poor prognosis. Our results uncover inflammation-induced NR4A1 as an important determinant for hyperactivation of pro-oncogenic TGF-β signalling in breast cancer.