Rodney S. Russell
Memorial University of Newfoundland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodney S. Russell.
Journal of Virology | 2005
Marie Chloé Boulanger; Chen Liang; Rodney S. Russell; Rongtuan Lin; Mark T. Bedford; Mark A. Wainberg; Stéphane Richard
ABSTRACT The human immunodeficiency virus (HIV) transactivator protein, Tat, stimulates transcription from the viral long terminal repeats via an arginine-rich transactivating domain. Since arginines are often known to be methylated, we investigated whether HIV type 1 (HIV-1) Tat was a substrate for known protein arginine methyltransferases (PRMTs). Here we identify Tat as a substrate for the arginine methyltransferase, PRMT6. Tat is specifically associated with and methylated by PRMT6 within cells. Overexpression of wild-type PRMT6, but not a methylase-inactive PRMT6 mutant, decreased Tat transactivation of an HIV-1 long terminal repeat luciferase reporter plasmid in a dose-dependent manner. Knocking down PRMT6 consistently increased HIV-1 production in HEK293T cells and also led to increased viral infectiousness as shown in multinuclear activation of a galactosidase indicator assays. Our study demonstrates that arginine methylation of Tat negatively regulates its transactivation activity and that PRMT6 acts as a restriction factor for HIV replication.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Rodney S. Russell; Jean-Christophe Meunier; Shingo Takikawa; Kristina Faulk; Ronald E. Engle; Jens Bukh; Robert H. Purcell; Suzanne U. Emerson
The JFH1 strain of hepatitis C virus (HCV) is unique among HCV isolates, in that the wild-type virus can traverse the entire replication cycle in cultured cells. However, without adaptive mutations, only low levels of infectious virus are produced. In the present study, the effects of five mutations that were selected during serial passage in Huh-7.5 cells were studied. Recombinant genomes containing all five mutations produced 3–4 logs more infectious virions than did wild type. Neither a coding mutation in NS5A nor a silent mutation in E2 was adaptive, whereas coding mutations in E2, p7, and NS2 all increased virus production. A single-cycle replication assay in CD81-deficient cells was developed to study more precisely the effect of the adaptive mutations. The E2 mutation had minimal effect on the amount of infectious virus released but probably enhanced entry into cells. In contrast, both the p7 and NS2 mutations independently increased the amount of virus released.
Journal of Virology | 2008
Jean-Christophe Meunier; Rodney S. Russell; Vera Goossens; Sofie Priem; Hugo Walter; Erik Depla; Ann Union; Kristina Faulk; Jens Bukh; Suzanne U. Emerson; Robert H. Purcell
ABSTRACT The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a. Results from this study suggest that these MAbs may have the potential to prevent HCV infection.
Journal of Virology | 2008
Jean-Christophe Meunier; Rodney S. Russell; Ronald E. Engle; Kristina Faulk; Robert H. Purcell; Suzanne U. Emerson
ABSTRACT Accumulating evidence suggests that cellular lipoprotein components are involved in hepatitis C virus (HCV) morphogenesis, but the precise contribution of these components remains unclear. We investigated the involvement of apolipoprotein C1 (ApoC1) in HCV infection in the HCV pseudotyped particle system (HCVpp), in the recently developed cell culture infection model (HCVcc), and in authentic HCV isolated from viremic chimpanzees. Viral genomes associated with HCVcc or authentic HCV were efficiently immunoprecipitated by anti-ApoC1, demonstrating that ApoC1 was a normal component of HCV. The infectivities of HCVpp that had been mixed with ApoC1 and, more importantly, untreated HCVcc collected from lysates or media of infected Huh7.5 cells were directly neutralized by anti-ApoC1. Indeed, convalescent anti-HCV immunoglobulin G and anti-ApoC1 each neutralized over 75% of infectious HCVcc particles, indicating that many, if not all, infectious particles were recognized by both antibodies. Moreover, peptides corresponding to the C-terminal region of ApoC1 blocked infectivity of both HCVpp and HCVcc. Altogether, these results suggest that ApoC1 associates intracellularly via its C-terminal region with surface components of virions during viral morphogenesis and may play a major role in the replication cycle of HCV.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Megan H. Powdrill; Egor P. Tchesnokov; Robert A. Kozak; Rodney S. Russell; Ross Martin; Evguenia Svarovskaia; Hongmei Mo; Roger D. Kouyos; Matthias Götte
The development of resistance to direct-acting antivirals (DAAs) targeting the hepatitis C virus (HCV) can compromise therapy. However, mechanisms that determine prevalence and frequency of resistance-conferring mutations remain elusive. Here, we studied the fidelity of the HCV RNA-dependent RNA polymerase NS5B in an attempt to link the efficiency of mismatch formation with genotypic changes observed in vivo. Enzyme kinetic measurements revealed unexpectedly high error rates (approximately 10-3 per site) for G∶U/U∶G mismatches. The strong preference for G∶U/U∶G mismatches over all other mistakes correlates with a mutational bias in favor of transitions over transversions. Deep sequencing of HCV RNA samples isolated from 20 treatment-naïve patients revealed an approximately 75-fold difference in frequencies of the two classes of mutations. A stochastic model based on these results suggests that the bias toward transitions can also affect the selection of resistance-conferring mutations. Collectively, the data provide strong evidence to suggest that the nature of the nucleotide change can contribute to the genetic barrier in the development of resistance to DAAs.
Journal of Virology | 2002
Chen Liang; Jing Hu; Rodney S. Russell; Ariel Roldan; Lawrence Kleiman; Mark A. Wainberg
ABSTRACT A 14-amino-acid spacer peptide termed SP1 that separates the capsid (CA) and nucleocapsid (NC) sequences plays an active role in the assembly of human immunodeficiency virus type 1. This activity of SP1 involves its amino-terminal residues that, together with adjacent CA residues, constitute a putative α-helical structure spanning Gag residues from positions 359 to 371. In this study, we have determined that the virus assembly determinants within this putative α-helix were residues H359, K360, A361, L364, A367, and M368, of which K360 and A367 contribute to virus production to lesser extents. Notably, changes of the two basic amino acids H359 and K360 to arginine (R) impaired virus production, whereas mutations L364I and M368I, in contrast to L364A and M368A, generated near-wild-type levels of virus particles. This suggests that within Gag complexes, amino acids H359 and K360 are involved in stricter steric interactions than L364 and M368. Since L364 and M368 are separated by four residues and thus presumably located on the same side of the helical surface, they may initiate synergistic hydrophobic interactions to stabilize Gag association. Further analysis in the context of the protease-negative mutation D185H confirmed the key roles of amino acids H359, A361, L364, and M368 in virus assembly. Importantly, when transfected cells were subjected to Dounce homogenization and the cell lysates were treated by ultracentrifugation at 100,000 × g, Gag molecules containing each of the H359A, A361V, L364A, and M368A mutations were found mainly in the supernatant fraction (S100), whereas approximately 80% of wild-type Gag proteins were found in the pellet. Therefore, these four mutations must have prevented Gag from generating large complexes.
Journal of Biological Chemistry | 2006
Bibhuti Bhusan Roy; Jing Hu; Xiaofeng Guo; Rodney S. Russell; Fei Guo; Lawrence Kleiman; Chen Liang
RNA helicase A (RHA) belongs to the DEAH family of proteins that are capable of unwinding double-stranded RNA structure. In addition to its involvement in the metabolism of cellular RNA, RHA has been shown to stimulate RNA transcription from the long terminal repeat promoter of human immunodeficiency virus type 1 (HIV-1) as well as to enhance Rev/Rev response element-mediated gene expression. In this study, we provide evidence that RHA associates with HIV-1 Gag in an RNA-dependent manner. This interaction results in specific incorporation of RHA into HIV-1 particles. Knockdown of endogenous RHA in virus producer cells leads to generation of HIV-1 particles that are less infectious in part as a result of restricted reverse transcription. Therefore, RHA represents the first example of cellular RNA helicases that participate in HIV-1 particle production and promote viral reverse transcription.
The Journal of Infectious Diseases | 2011
Jean-Christophe Meunier; Judith M. Gottwein; Michael Houghton; Rodney S. Russell; Suzanne U. Emerson; Jens Bukh; Robert H. Purcell
We detected cross-reactive neutralizing antibodies (NtAb) against hepatitis C virus (HCV) in chimpanzees vaccinated with HCV-1 (genotype 1a) recombinant E1/E2 envelope glycoproteins. Five vaccinated chimpanzees, protected following HCV-1 challenge, were initially studied using the heterologous H77 (genotype 1a) HCVpp assay. All animals had developed NtAb after the second vaccination; 4 animals had reciprocal titers of ≥200 at the time of challenge. Using genotypes 1a-6a HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) assays, cross-reactive NtAb were detected against 1a, 4a, 5a, and 6a, with limited reactivity against 2a and 3a. Our study provides encouragement for the development of a recombinant envelope-based vaccine against hepatitis C.
Hepatology | 2014
Ragunath Singaravelu; Ran Chen; Rodney K. Lyn; Daniel M. Jones; Shifawn O'Hara; Yanouchka Rouleau; Jenny Cheng; Prashanth Srinivasan; Neda Nasheri; Rodney S. Russell; D. Lorne Tyrrell; John Paul Pezacki
MicroRNAs (miRNAs) are small RNAs that posttranscriptionally regulate gene expression. Their aberrant expression is commonly linked with diseased states, including hepatitis C virus (HCV) infection. Herein, we demonstrate that HCV replication induces the expression of miR‐27 in cell culture and in vivo HCV infectious models. Overexpression of the HCV proteins core and NS4B independently activates miR‐27 expression. Furthermore, we establish that miR‐27 overexpression in hepatocytes results in larger and more abundant lipid droplets, as observed by coherent anti‐Stokes Raman scattering (CARS) microscopy. This hepatic lipid droplet accumulation coincides with miR‐27bs repression of peroxisome proliferator‐activated receptor (PPAR)‐α and angiopoietin‐like protein 3 (ANGPTL3), known regulators of triglyceride homeostasis. We further demonstrate that treatment with a PPAR‐α agonist, bezafibrate, is able to reverse the miR‐27b‐induced lipid accumulation in Huh7 cells. This miR‐27b‐mediated repression of PPAR‐α signaling represents a novel mechanism of HCV‐induced hepatic steatosis. This link was further demonstrated in vivo through the correlation between miR‐27b expression levels and hepatic lipid accumulation in HCV‐infected SCID‐beige/Alb‐uPa mice. Conclusion: Collectively, our results highlight HCVs up‐regulation of miR‐27 expression as a novel mechanism contributing to the development of hepatic steatosis. (Hepatology 2014;58:98–108)
Journal of Virology | 2003
Rodney S. Russell; Jing Hu; Véronique Bériault; Andrew J. Mouland; Lawrence Kleiman; Mark A. Wainberg; Chen Liang
ABSTRACT Two copies of human immunodeficiency virus type 1 RNA are incorporated into each virus particle and are further converted to a stable dimer as the virus particle matures. Several RNA segments that flank the 5′ splice donor site at nucleotide (nt) 289 have been shown to act as packaging signals. Among these, RNA stem-loop 1 (SL1) (nt 243 to 277) can trigger RNA dimerization through a “kissing-loop” mechanism and thus is termed the dimerization initiation site. However, it is unknown whether other packaging signals are also needed for dimerization. To pursue this subject, we mutated stem-loop 3 (SL3) (nt 312 to 325), a GA-rich region (nt 325 to 336), and two G-rich repeats (nt 363 to 367 and nt 405 to 409) in proviral DNA and assessed the effects on RNA dimerization by performing native Northern blot analyses. Our results show that the structure but not the specific RNA sequence of SL3 is needed not only for efficient viral RNA packaging but also for dimerization. Mutations of the GA-rich sequence severely diminished viral RNA dimerization as well as packaging; the combination of mutations in both SL3 and the GA-rich region led to further decreases, implying independent roles for each of these two RNA motifs. Compensation studies further demonstrated that the RNA-packaging and dimerization activity of the GA-rich sequence may not depend on a putative interaction between this region and a CU repeat sequence at nt 227 to 233. In contrast, substitutions in the two G-rich sequences did not cause any diminution of viral RNA packaging or dimerization. We conclude that both the SL3 motif and GA-rich RNA sequences, located downstream of the 5′ splice donor site, are required for efficient RNA packaging and dimerization.