Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger M. Jarvis is active.

Publication


Featured researches published by Roger M. Jarvis.


Chemical Society Reviews | 2008

Characterisation and identification of bacteria using SERS

Roger M. Jarvis; Royston Goodacre

Within microbiology Raman spectroscopy is considered as a very important whole-organism fingerprinting technique, which is used to characterise, discriminate and identify microorganisms and assess how they respond to abiotic or biotic stress. Enhancing the sensitivity of Raman spectroscopy is very beneficial for the rapid analysis of bacteria (and indeed biological systems in general), where the ultimate goal is to achieve this without the need for lengthy cell culture. Bypassing this step would provide significant benefits in many areas such as medical, environmental and industrial microbiology, microbial systems biology, biological warfare countermeasures and bioprocess monitoring. In this tutorial review we will report on the advances made in bacterial studies, a relatively new and exciting application area for SERS.


Analytical Chemistry | 2008

Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites

Catherine L. Winder; Warwick B. Dunn; Stephanie Schuler; David Broadhurst; Roger M. Jarvis; Gill Stephens; Royston Goodacre

Metabolomics and systems biology require the acquisition of reproducible, robust, reliable, and homogeneous biological data sets. Therefore, we developed and validated standard operating procedures (SOPs) for quenching and efficient extraction of metabolites from Escherichia coli to determine the best methods to approach global analysis of the metabolome. E. coli was grown in chemostat culture so that cellular metabolism could be held in reproducible, steady-state conditions under a range of precisely defined growth conditions, thus enabling sufficient replication of samples. The metabolome profiles were generated using gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). We employed univariate and multivariate statistical analyses to determine the most suitable method. This investigation indicates that 60% cold (-48 degrees C) methanol solution is the most appropriate method to quench metabolism, and we recommend 100% methanol, also at -48 degrees C, with multiple freeze-thaw cycles for the extraction of metabolites. However, complementary extractions would be necessary for coverage of the entire complement of metabolites as detected by GC/TOF-MS. Finally, the observation that metabolite leakage was significant and measurable whichever quenching method is used indicates that methods should be incorporated into the experiment to facilitate the accurate quantification of intracellular metabolites.


Faraday Discussions | 2006

Surface-enhanced Raman scattering for the rapid discrimination of bacteria

Roger M. Jarvis; Alan Brooker; Royston Goodacre

Raman spectroscopy is attracting interest for the rapid identification of bacteria and fungi and is now becoming accepted as a potentially powerful whole-organism fingerprinting technique. However, the Raman effect is so weak that collection times are lengthy, and this insensitivity means that bacteria must be cultured to gain enough biomass, which therefore limits its usefulness in clinical laboratories where high-throughput analyses are needed. The Raman effect can fortunately be greatly enhanced (by some 10(3)-10(6)-fold) if the molecules are attached to, or microscopically close to, a suitably roughened surface; a technique known as surface-enhanced Raman scattering (SERS). In this study we investigated SERS, employing an aggregated silver colloid substrate, for the analysis of a closely related group of bacteria belonging to the genus Bacillus. Each spectrum took only 20 s to collect and highly reproducible data were generated. The multivariate statistical technique of principal components-discriminant function analysis (PC-DFA) was used to group these bacteria based on their SERS fingerprints. The resultant ordination plots showed that the SERS spectra were highly discriminatory and gave accurate identification at the strain level. In addition, Bacillus species also undergo sporulation, and we demonstrate that SERS peaks that could be attributed to the dipicolinic acid biomarker, could be readily generated from Bacillus spores.


Bioinformatics | 2005

Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data

Roger M. Jarvis; Royston Goodacre

MOTIVATION The major difficulties relating to mathematical modelling of spectroscopic data are inconsistencies in spectral reproducibility and the black box nature of the modelling techniques. For the analysis of biological samples the first problem is due to biological, experimental and machine variability which can lead to sample size differences and unavoidable baseline shifts. Consequently, there is often a requirement for mathematical correction(s) to be made to the raw data if the best possible model is to be formed. The second problem prevents interpretation of the results since the variables that most contribute to the analysis are not easily revealed; as a result, the opportunity to obtain new knowledge from such data is lost. METHODS We used genetic algorithms (GAs) to select spectral pre-processing steps for Fourier transform infrared (FT-IR) spectroscopic data. We demonstrate a novel approach for the selection of important discriminatory variables by GA from FT-IR spectra for multi-class identification by discriminant function analysis (DFA). RESULTS The GA selects sensible pre-processing steps from a total of approximately 10(10) possible mathematical transformations. Application of these algorithms results in a 16% reduction in the model error when compared against the raw data model. GA-DFA recovers six variables from the full set of 882 spectral variables against which a satisfactory DFA model can be formed; thus inferences can be made as to the biochemical differences that are reflected by these spectral bands.


Analyst | 2008

Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS).

Karen Faulds; Roger M. Jarvis; W. Ewen Smith; Duncan Graham; Royston Goodacre

The labelling of target biomolecules followed by detection using some form of optical spectroscopy has become common practice to aid in their detection. This approach has allowed the field of bioanalysis to dramatically expand; however, most methods suffer from the lack of the ability to discriminate between the components of a complex mixture. Currently, fluorescence spectroscopy is the method of choice but its ability to multiplex is greatly hampered by the broad overlapping spectra which are obtained. Surface enhanced resonance Raman scattering (SERRS) holds many advantages over fluorescence both in sensitivity and, more importantly here, in its ability to identify components in a mixture without separation due to the sharp fingerprint spectra obtained. Here the first multiplexed simultaneous detection of six different DNA sequences, corresponding to different strains of the Escherichia coli bacterium, each labelled with a different commercially available dye label (ROX, HEX, FAM, TET, Cy3, or TAMRA) is reported. This was achieved with the aid of multivariate analysis, also known as chemometrics, which can involve the application of a wide range of statistical and data analysis methods. In this study, both exploratory discriminant analysis and supervised learning, by partial least squares (PLS) regression, were used and the ability to discriminate whether a particular labelled oligonucleotide was present or absent in a mixture was achieved using PLS with very high sensitivity (0.98-1), specificity (0.98-1), accuracy (range 0.99-1), and precision (0.98-1).


Analyst | 2010

Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers

Maria Basanta; Roger M. Jarvis; Yun Xu; Gavin J Blackburn; Ruth Tal-Singer; Ashley Woodcock; Dave Singh; Royston Goodacre; C. L. Paul Thomas; Stephen J. Fowler

The rapid, accurate and non-invasive diagnosis of respiratory disease represents a challenge to clinicians, and the development of new treatments can be confounded by insufficient knowledge of lung disease phenotypes. Exhaled breath contains a complex mixture of volatile organic compounds (VOCs), some of which could potentially represent biomarkers for lung diseases. We have developed an adaptive sampling methodology for collecting concentrated samples of exhaled air from participants with impaired respiratory function, against which we employed two-stage thermal desorption gas chromatography-differential mobility spectrometry (GC-DMS) analysis, and showed that it was possible to discriminate between participants with and without chronic obstructive pulmonary disease (COPD). A 2.5 dm(3) volume of end tidal breath was collected onto adsorbent traps (Tenax TA/Carbotrap), from participants with severe COPD and healthy volunteers. Samples were thermally desorbed and analysed by GC-DMS, and the chromatograms analysed by univariate and multivariate analyses. Kruskal-Wallis ANOVA indicated several discriminatory (p < 0.01) signals, with good classification performance (receiver operator characteristic area up to 0.82). Partial least squares discriminant analysis using the full DMS chromatograms also gave excellent discrimination between groups (alpha = 19% and beta = 12.4%).


Analytical Chemistry | 2008

Surface-Enhanced Raman Scattering from Intracellular and Extracellular Bacterial Locations

Roger M. Jarvis; Nicholas Law; Iqbal T. Shadi; Paul O’Brien; Jonathan R. Lloyd; Royston Goodacre

While surface-enhanced Raman scattering (SERS) can increase the Raman cross-section by 4-6 orders of magnitude, for SERS to be effective it is necessary for the analyte to be either chemically bonded or within close proximity to the metal surface used. Therefore most studies investigating the biochemical constituents of microorganisms have introduced an external supply of gold or silver nanoparticles. As a consequence, the study of bacteria by SERS has to date been focused almost exclusively on the extracellular analysis of the Gram-negative outer cell membrane. Bacterial cells typically measure as little as 0.5 by 1 mum, and it is difficult to introduce a nanometer sized colloidal metal particle into this tiny environment. However, dissimilatory metal-reducing bacteria, including Shewanella and Geobacter species, can reduce a wide range of high valence metal ions, often within the cell, and for Ag(I) and Au(III) this can result in the formation of colloidal zero-valent particles. Here we report, for the first time, SERS of the bacterium Geobacter sulfurreducens facilitated by colloidal gold particles precipitated within the cell. In addition, we show SERS from the same organism following reduction of ionic silver, which results in colloidal silver depositions on the cell surface.


Bioinformatics | 2006

PYCHEM: a multivariate analysis package for python

Roger M. Jarvis; David Broadhurst; Helen Elisabeth Johnson; Noel M. O'Boyle; Royston Goodacre

UNLABELLED We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has a broad complement of methods that are widely used in the biological sciences. In contrast to tools like MATLAB, PyChem 2.0.0 is easily accessible and free, allows for rapid extension using a range of Python modules and is part of the growing amount of complementary and interoperable scientific software in Python based upon SciPy. One of the attractions of PyChem is that it is an open source project and so there is an opportunity, through collaboration, to increase the scope of the software and to continually evolve a user-friendly platform that has applicability across a wide range of analytical and post-genomic disciplines. AVAILABILITY http://sourceforge.net/projects/pychem


Biotechnology and Bioengineering | 2010

Rapid monitoring of recombinant antibody production by mammalian cell cultures using fourier transform infrared spectroscopy and chemometrics

Christopher A. Sellick; Rasmus Hansen; Roger M. Jarvis; Arfa Maqsood; Gill Stephens; Alan J. Dickson; Royston Goodacre

Fourier transform infrared (FT‐IR) spectroscopy combined with multivariate statistical analyses was investigated as a physicochemical tool for monitoring secreted recombinant antibody production in cultures of Chinese hamster ovary (CHO) and murine myeloma non‐secreting 0 (NS0) cell lines. Medium samples were taken during culture of CHO and NS0 cells lines, which included both antibody‐producing and non‐producing cell lines, and analyzed by FT‐IR spectroscopy. Principal components analysis (PCA) alone, and combined with discriminant function analysis (PC‐DFA), were applied to normalized FT‐IR spectroscopy datasets and showed a linear trend with respect to recombinant protein production. Loadings plots of the most significant spectral components showed a decrease in the C–O stretch from polysaccharides and an increase in the amide I band during culture, respectively, indicating a decrease in sugar concentration and an increase in protein concentration in the medium. Partial least squares regression (PLSR) analysis was used to predict antibody titers, and these regression models were able to predict antibody titers accurately with low error when compared to ELISA data. PLSR was also able to predict glucose and lactate amounts in the medium samples accurately. This work demonstrates that FT‐IR spectroscopy has great potential as a tool for monitoring cell cultures for recombinant protein production and offers a starting point for the application of spectroscopic techniques for the on‐line measurement of antibody production in industrial scale bioreactors. Biotechnol. Bioeng. 2010; 106: 432–442.


Journal of Bacteriology | 2010

Impact of Silver(I) on the Metabolism of Shewanella oneidensis

Hui Wang; Nicholas Law; Geraldine Pearson; Bart E. van Dongen; Roger M. Jarvis; Royston Goodacre; Jonathan R. Lloyd

Anaerobic cultures of Shewanella oneidensis MR-1 reduced toxic Ag(I), forming nanoparticles of elemental Ag(0), as confirmed by X-ray diffraction analyses. The addition of 1 to 50 microM Ag(I) had a limited impact on growth, while 100 microM Ag(I) reduced both the doubling time and cell yields. At this higher Ag(I) concentration transmission electron microscopy showed the accumulation of elemental silver particles within the cell, while at lower concentrations the metal was exclusively reduced and precipitated outside the cell wall. Whole organism metabolite fingerprinting, using the method of Fourier transform infrared spectroscopy analysis of cells grown in a range of silver concentrations, confirmed that there were significant physiological changes at 100 microM silver. Principal component-discriminant function analysis scores and loading plots highlighted changes in certain functional groups, notably, lipids, amides I and II, and nucleic acids, as being discriminatory. Molecular analyses confirmed a dramatic drop in cellular yields of both the phospholipid fatty acids and their precursor molecules at high concentrations of silver, suggesting that the structural integrity of the cellular membrane was compromised at high silver concentrations, which was a result of intracellular accumulation of the toxic metal.

Collaboration


Dive into the Roger M. Jarvis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gill Stephens

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Yun Xu

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Henderson

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Wang

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge