Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rohan de Silva is active.

Publication


Featured researches published by Rohan de Silva.


Neuron | 2004

Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease

Coro Paisán-Ruiz; Shushant Jain; E. Whitney Evans; William P. Gilks; Javier Simón; Marcel van der Brug; Adolfo López de Munain; Silvia Aparicio; Angel Martı́nez Gil; Naheed L. Khan; Janel O. Johnson; Javier Ruiz Martinez; David Nicholl; Itxaso Marti Carrera; Amets Saénz Peňa; Rohan de Silva; Andrew J. Lees; Jose Felix Marti-Masso; Jordi Pérez-Tur; Nicholas W. Wood; Andrew Singleton

Parkinsons disease (PD; OMIM #168600) is the second most common neurodegenerative disorder in the Western world and presents as a progressive movement disorder. The hallmark pathological features of PD are loss of dopaminergic neurons from the substantia nigra and neuronal intracellular Lewy body inclusions. Parkinsonism is typically sporadic in nature; however, several rare familial forms are linked to genetic loci, and the identification of causal mutations has provided insight into the disease process. PARK8, identified in 2002 by Funayama and colleagues, appears to be a common cause of familial PD. We describe here the cloning of a novel gene that contains missense mutations segregating with PARK8-linked PD in five families from England and Spain. Because of the tremor observed in PD and because a number of the families are of Basque descent, we have named this protein dardarin, derived from the Basque word dardara, meaning tremor.


Journal of Neurochemistry | 2003

Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms

Cathy Andorfer; Yvonne Kress; Marisol Espinoza; Rohan de Silva; Kerry Lee Tucker; Yves-Alain Barde; Karen Duff; Peter Davies

Neurofibrillary tangles are composed of insoluble aggregates of the microtubule‐associated protein tau. In Alzheimers disease the accumulation of neurofibrillary tangles occurs in the absence of tau mutations. Here we present mice that develop pathology from non‐mutant human tau, in the absence of other exogenous factors, including β‐amyloid. The pathology in these mice is Alzheimer‐like, with hyperphosphorylated tau accumulating as aggregated paired helical filaments. This pathologic tau accumulates in the cell bodies and dendrites of neurons in a spatiotemporally relevant distribution.


Nature Genetics | 2006

Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability

Charles Shaw-Smith; Alan Pittman; Lionel Willatt; Howard Martin; Lisa Rickman; Susan M. Gribble; Rebecca Curley; Sally Cumming; Carolyn Dunn; Dimitrios Kalaitzopoulos; K. M. Porter; Elena Prigmore; Ana Cristina Krepischi-Santos; Célia P. Koiffmann; Andrew J. Lees; Carla Rosenberg; Helen V. Firth; Rohan de Silva; Nigel P. Carter

Recently, the application of array-based comparative genomic hybridization (array CGH) has improved rates of detection of chromosomal imbalances in individuals with mental retardation and dysmorphic features. Here, we describe three individuals with learning disability and a heterozygous deletion at chromosome 17q21.3, detected in each case by array CGH. FISH analysis demonstrated that the deletions occurred as de novo events in each individual and were between 500 kb and 650 kb in size. A recently described 900-kb inversion that suppresses recombination between ancestral H1 and H2 haplotypes encompasses the deletion. We show that, in each trio, the parent of origin of the deleted chromosome 17 carries at least one H2 chromosome. This region of 17q21.3 shows complex genomic architecture with well-described low-copy repeats (LCRs). The orientation of LCRs flanking the deleted segment in inversion heterozygotes is likely to facilitate the generation of this microdeletion by means of non-allelic homologous recombination.


Brain | 2011

Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important?

Yaroslau Compta; Laura Parkkinen; Sean S. O'Sullivan; Jana Vandrovcova; Janice L. Holton; Catherine Collins; Tammaryn Lashley; Constantinos Kallis; David R. Williams; Rohan de Silva; Andrew J. Lees; Tamas Revesz

The relative importance of Lewy- and Alzheimer-type pathologies to dementia in Parkinsons disease remains unclear. We have examined the combined associations of α-synuclein, tau and amyloid-β accumulation in 56 pathologically confirmed Parkinsons disease cases, 29 of whom had developed dementia. Cortical and subcortical amyloid-β scores were obtained, while tau and α-synuclein pathologies were rated according to the respective Braak stages. Additionally, cortical Lewy body and Lewy neurite scores were determined and Lewy body densities were generated using morphometry. Non-parametric statistics, together with regression models, receiver-operating characteristic curves and survival analyses were applied. Cortical and striatal amyloid-β scores, Braak tau stages, cortical Lewy body, Lewy neurite scores and Lewy body densities, but not Braak α-synuclein stages, were all significantly greater in the Parkinsons disease-dementia group (P<0.05), with all the pathologies showing a significant positive correlation to each other (P<0.05). A combination of pathologies [area under the receiver-operating characteristic curve=0.95 (0.88-1.00); P<0.0001] was a better predictor of dementia than the severity of any single pathology. Additionally, cortical amyloid-β scores (r=-0.62; P=0.043) and Braak tau stages (r=-0.52; P=0.028), but not Lewy body scores (r=-0.25; P=0.41) or Braak α-synuclein stages (r=-0.44; P=0.13), significantly correlated with mini-mental state examination scores in the subset of cases with this information available within the last year of life (n=15). High cortical amyloid-β score (P=0.017) along with an older age at onset (P=0.001) were associated with a shorter time-to-dementia period. A combination of Lewy- and Alzheimer-type pathologies is a robust pathological correlate of dementia in Parkinsons disease, with quantitative and semi-quantitative assessment of Lewy pathology being more informative than Braak α-synuclein stages. Cortical amyloid-β and age at disease onset seem to determine the rate to dementia.


Nature Neuroscience | 2014

Genetic variability in the regulation of gene expression in ten regions of the human brain

Adaikalavan Ramasamy; Daniah Trabzuni; Sebastian Guelfi; Vibin Varghese; Colin Smith; Robert Walker; Tisham De; Lachlan Coin; Rohan de Silva; Mark R. Cookson; Andrew Singleton; John Hardy; Mina Ryten; Michael E. Weale

Germ-line genetic control of gene expression occurs via expression quantitative trait loci (eQTLs). We present a large, exon-specific eQTL data set covering ten human brain regions. We found that cis-eQTL signals (within 1 Mb of their target gene) were numerous, and many acted heterogeneously among regions and exons. Co-regulation analysis of shared eQTL signals produced well-defined modules of region-specific co-regulated genes, in contrast to standard coexpression analysis of the same samples. We report cis-eQTL signals for 23.1% of catalogued genome-wide association study hits for adult-onset neurological disorders. The data set is publicly available via public data repositories and via http://www.braineac.org/. Our study increases our understanding of the regulation of gene expression in the human brain and will be of value to others pursuing functional follow-up of disease-associated variants.


Brain | 2011

Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration

Jonathan D. Rohrer; Tammaryn Lashley; Jonathan M. Schott; Jane E. Warren; Simon Mead; Adrian M. Isaacs; Jonathan Beck; John Hardy; Rohan de Silva; Elizabeth K. Warrington; Claire Troakes; Safa Al-Sarraj; Andrew King; Barbara Borroni; Matthew J. Clarkson; Sebastien Ourselin; Janice L. Holton; Nick C. Fox; Tamas Revesz; Jason D. Warren

Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Picks disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Picks disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.


Human Molecular Genetics | 2012

MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies

Daniah Trabzuni; Selina Wray; Jana Vandrovcova; Adaikalavan Ramasamy; Robert Walker; Colin Smith; Connie Luk; J. Raphael Gibbs; Allissa Dillman; Dena Hernandez; Sampath Arepalli; Andrew Singleton; Mark R. Cookson; Alan Pittman; Rohan de Silva; Michael E. Weale; John Hardy; Mina Ryten

The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinsons disease and possibly Alzheimers disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene.


Acta Neuropathologica | 2006

An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies

Rohan de Silva; Tammaryn Lashley; C Strand; Anna Maria Shiarli; Jing Shi; Jinzhou Tian; Kathryn L. Bailey; Peter Davies; Eileen H. Bigio; Kunimasa Arima; Eizo Iseki; Shigeo Murayama; Hans A. Kretzschmar; Manuela Neumann; Carol F. Lippa; Glenda M. Halliday; James MacKenzie; Rivka Ravid; Dennis W. Dickson; Zbigniew K. Wszolek; Takeshi Iwatsubo; S. M. Pickering-Brown; Janice L. Holton; Andrew J. Lees; Tamas Revesz; David Mann

The pathological distinctions between the various clinical and pathological manifestations of frontotemporal lobar degeneration (FTLD) remain unclear. Using monoclonal antibodies specific for 3- and 4-repeat isoforms of the microtubule associated protein, tau (3R- and 4R-tau), we have performed an immunohistochemical study of the tau pathology present in 14 cases of sporadic forms of FTLD, 12 cases with Pick bodies and two cases without and in 27 cases of familial FTLD associated with 12 different mutations in the tau gene (MAPT), five cases with Pick bodies and 22 cases without. In all 12 cases of sporadic FTLD where Pick bodies were present, these contained only 3R-tau isoforms. Clinically, ten of these cases had frontotemporal dementia and two had progressive apraxia. Only 3R-tau isoforms were present in Pick bodies in those patients with familial FTLD associated with L266V, Q336R, E342V, K369I or G389R MAPT mutations. Patients with familial FTLD associated with exon 10 N279K, N296H or +16 splice site mutations showed tau pathology characterised by neuronal neurofibrillary tangles (NFT) and glial cell tangles that contained only 4R-tau isoforms, as did the NFT in P301L MAPT mutation. With the R406W mutation, NFT contained both 3R- and 4R-tau isoforms. We also observed two patients with sporadic FTLD, but without Pick bodies, in whom the tau pathology comprised only of 4R-tau isoforms. We have therefore shown by immunohistochemistry that different specific tau isoform compositions underlie the various kinds of tau pathology present in sporadic and familial FTLD. The use of such tau isoform specific antibodies may refine pathological criteria underpinning FTLD.


Neuroscience Letters | 2004

The tau H2 haplotype is almost exclusively Caucasian in origin.

Whitney Evans; Hon Chung Fung; John C. Steele; Johanna Eerola; Pentti J. Tienari; Alan Pittman; Rohan de Silva; Amanda J. Myers; Fabienne Wavrant-De Vrièze; Andrew Singleton; John Hardy

We have assessed the distribution of the tau H1/H2 haplotype in the publicly available reference series of samples with representatives of most racial groups. This analysis shows that the H2 haplotype is probably exclusively Caucasian in origin and its marginal occurrence in other racial groups is likely to reflect admixture. We discuss this observation in terms of the origin of the H2 haplotype and the epidemiology of the tauopathies.


Biomolecules , 6 (1) , Article 6. (2016) | 2016

Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies

Goran Šimić; Mirjana Babić Leko; Selina Wray; Charles R. Harrington; Ivana Delalle; Nataša Jovanov-Milošević; Danira Bažadona; Luc Buée; Rohan de Silva; Giuseppe Di Giovanni; Claude M. Wischik; Patrick R. Hof

Abnormal deposition of misprocessed and aggregated proteins is a common final pathway of most neurodegenerative diseases, including Alzheimer’s disease (AD). AD is characterized by the extraneuronal deposition of the amyloid β (Aβ) protein in the form of plaques and the intraneuronal aggregation of the microtubule-associated protein tau in the form of filaments. Based on the biochemically diverse range of pathological tau proteins, a number of approaches have been proposed to develop new potential therapeutics. Here we discuss some of the most promising ones: inhibition of tau phosphorylation, proteolysis and aggregation, promotion of intra- and extracellular tau clearance, and stabilization of microtubules. We also emphasize the need to achieve a full understanding of the biological roles and post-translational modifications of normal tau, as well as the molecular events responsible for selective neuronal vulnerability to tau pathology and its propagation. It is concluded that answering key questions on the relationship between Aβ and tau pathology should lead to a better understanding of the nature of secondary tauopathies, especially AD, and open new therapeutic targets and strategies.

Collaboration


Dive into the Rohan de Silva's collaboration.

Top Co-Authors

Avatar

Andrew J. Lees

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Alan Pittman

University College London

View shared research outputs
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar

Tamas Revesz

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Janice L. Holton

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Tammaryn Lashley

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas W. Wood

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Roberto Simone

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge