Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ron T. McElmurry is active.

Publication


Featured researches published by Ron T. McElmurry.


Stem Cells | 2007

Sarcoma derived from cultured mesenchymal stem cells

Jakub Tolar; Alma J. Nauta; Mark J. Osborn; Angela Mortari; Ron T. McElmurry; Scott Bell; Lily Xia; Ning Zhou; Megan Riddle; Tania M. Schroeder; Jennifer J. Westendorf; R. Scott McIvor; Pancras C.W. Hogendoorn; Karoly Szuhai; LeAnn Oseth; Betsy Hirsch; Stephen R. Yant; Mark A. Kay; Alexandra Peister; Darwin J. Prockop; Willem E. Fibbe; Bruce R. Blazar

To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole‐body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain‐specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon‐related genetic abnormality, and p53 was not overexpressed. Infusion of MSC‐derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.


Blood | 2008

Amelioration of epidermolysis bullosa by transfer of wild-type bone marrow cells

Jakub Tolar; Akemi Ishida-Yamamoto; Megan Riddle; Ron T. McElmurry; Mark J. Osborn; Lily Xia; Troy C. Lund; Catherine Slattery; Jouni Uitto; Angela M. Christiano; John E. Wagner; Bruce R. Blazar

The recessive dystrophic form of epidermolysis bullosa (RDEB) is a disorder of incurable skin fragility and blistering caused by mutations in the type VII collagen gene (Col7a1). The absence of type VII collagen production leads to the loss of adhesion at the basement membrane zone due to the absence of anchoring fibrils, which are composed of type VII collagen. We report that wild-type, congenic bone marrow cells homed to damaged skin, produced type VII collagen protein and anchoring fibrils, ameliorated skin fragility, and reduced lethality in the murine model of RDEB generated by targeted Col7a1 disruption. These data provide the first evidence that a population of marrow cells can correct the basement membrane zone defect found in mice with RDEB and offer a potentially valuable approach for treatment of human RDEB and other extracellular matrix disorders.


Journal of Investigative Dermatology | 2011

Induced Pluripotent Stem Cells from Individuals with Recessive Dystrophic Epidermolysis Bullosa

Jakub Tolar; Lily Xia; Megan Riddle; Christopher J. Lees; Cindy R. Eide; Ron T. McElmurry; Matthias Titeux; Mark J. Osborn; Troy C. Lund; Alain Hovnanian; John E. Wagner; Bruce R. Blazar

Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited blistering skin disorder caused by mutations in the COL7A1 gene-encoding type VII collagen (Col7), the major component of anchoring fibrils at the dermal-epidermal junction. Individuals with RDEB develop painful blisters and mucosal erosions, and currently, there are no effective forms of therapy. Nevertheless, some advances in patient therapy are being made, and cell-based therapies with mesenchymal and hematopoietic cells have shown promise in early clinical trials. To establish a foundation for personalized, gene-corrected, patient-specific cell transfer, we generated induced pluripotent stem (iPS) cells from three subjects with RDEB (RDEB iPS cells). We found that Col7 was not required for stem cell renewal and that RDEB iPS cells could be differentiated into both hematopoietic and nonhematopoietic lineages. The specific epigenetic profile associated with de-differentiation of RDEB fibroblasts and keratinocytes into RDEB iPS cells was similar to that observed in wild-type (WT) iPS cells. Importantly, human WT and RDEB iPS cells differentiated in vivo into structures resembling the skin. Gene-corrected RDEB iPS cells expressed Col7. These data identify the potential of RDEB iPS cells to generate autologous hematopoietic grafts and skin cells with the inherent capacity to treat skin and mucosal erosions that typify this genodermatosis.


Molecular Therapy | 2011

Minicircle DNA-based gene therapy coupled with immune modulation permits long-term expression of α-L-iduronidase in mice with mucopolysaccharidosis type I.

Mark J. Osborn; Ron T. McElmurry; Christopher J. Lees; Anthony P. Defeo; Zhi-Ying Chen; Mark A. Kay; Luigi Naldini; Gordon J. Freeman; Jakub Tolar; Bruce R. Blazar

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease characterized by mutations to the α-L-iduronidase (IDUA) gene resulting in inactivation of the IDUA enzyme. The loss of IDUA protein results in the progressive accumulation of glycosaminoglycans within the lysosomes resulting in severe, multi-organ system pathology. Gene replacement strategies have relied on the use of viral or nonviral gene delivery systems. Drawbacks to these include laborious production procedures, poor efficacy due to plasmid-borne gene silencing, and the risk of insertional mutagenesis. This report demonstrates the efficacy of a nonintegrating, minicircle (MC) DNA vector that is resistant to epigenetic gene silencing in vivo. To achieve sustained expression of the immunogenic IDUA protein we investigated the use of a tissue-specific promoter in conjunction with microRNA target sequences. The inclusion of microRNA target sequences resulted in a slight improvement in long-term expression compared to their absence. However, immune modulation by costimulatory blockade was required and permitted for IDUA expression in MPS I mice that resulted in the biochemical correction of pathology in all of the organs analyzed. MC gene delivery combined with costimulatory pathway blockade maximizes safety, efficacy, and sustained gene expression and is a new approach in the treatment of lysosomal storage disease.


Blood | 2011

Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome)

Jakub Tolar; In-Hyun Park; Lily Xia; Christopher J. Lees; Brandon Peacock; Beau R. Webber; Ron T. McElmurry; Cindy R. Eide; Paul J. Orchard; Michael Kyba; Mark J. Osborn; Troy C. Lund; John E. Wagner; George Q. Daley; Bruce R. Blazar

Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a congenital deficiency of α-L-iduronidase, leading to lysosomal storage of glycosaminoglycans that is ultimately fatal following an insidious onset after birth. Hematopoietic cell transplantation (HCT) is a life-saving measure in MPS IH. However, because a suitable hematopoietic donor is not found for everyone, because HCT is associated with significant morbidity and mortality, and because there is no known benefit of immune reaction between the host and the donor cells in MPS IH, gene-corrected autologous stem cells may be the ideal graft for HCT. Thus, we generated induced pluripotent stem cells from 2 patients with MPS IH (MPS-iPS cells). We found that α-L-iduronidase was not required for stem cell renewal, and that MPS-iPS cells showed lysosomal storage characteristic of MPS IH and could be differentiated to both hematopoietic and nonhematopoietic cells. The specific epigenetic profile associated with de-differentiation of MPS IH fibroblasts into MPS-iPS cells was maintained when MPS-iPS cells are gene-corrected with virally delivered α-L-iduronidase. These data underscore the potential of MPS-iPS cells to generate autologous hematopoietic grafts devoid of immunologic complications of allogeneic transplantation, as well as generating nonhematopoietic cells with the potential to treat anatomical sites not fully corrected with HCT.


Clinical Cancer Research | 2016

IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function

Daniel A. Vallera; Martin Felices; Ron T. McElmurry; Valarie McCullar; Xianzheng Zhou; Joerg U. Schmohl; Bin Zhang; Alexander J. Lenvik; Angela Panoskaltsis-Mortari; Michael R. Verneris; Jakub Tolar; Sarah Cooley; Daniel J. Weisdorf; Bruce R. Blazar; Jeffrey S. Miller

Purpose: The effectiveness of NK cell infusions to induce leukemic remission is limited by lack of both antigen specificity and in vivo expansion. To address the first issue, we previously generated a bispecific killer engager (BiKE) containing single-chain scFv against CD16 and CD33 to create an immunologic synapse between NK cells and CD33+ myeloid targets. We have now incorporated a novel modified human IL15 crosslinker, producing a 161533 trispecific killer engager (TriKE) to induce expansion, priming, and survival, which we hypothesize will enhance clinical efficacy. Experimental Design: Reagents were tested in proliferation and functional assays and in an in vivo xenograft model of AML. Results: When compared with the 1633 BiKE, the 161533 TriKE induced superior NK cell cytotoxicity, degranulation, and cytokine production against CD33+ HL-60 targets and increased NK survival and proliferation. Specificity was shown by the ability of a 1615EpCAM TriKE to kill CD33-EpCAM+ targets. Using NK cells from patients after allogeneic stem cell transplantation when NK cell function is defective, the 161533 TriKE restored potent NK function against primary AML targets and induced specific NK cell proliferation. These results were confirmed in an immunodeficient mouse HL-60-Luc tumor model where the 161533 TriKE exhibited superior antitumor activity and induced in vivo persistence and survival of human NK cells for at least 3 weeks. Conclusions: Off-the-shelf 161533 TriKE imparts antigen specificity and promotes in vivo persistence, activation, and survival of NK cells. These qualities are ideal for NK cell therapy of myeloid malignancies or targeting antigens of solid tumors. Clin Cancer Res; 22(14); 3440–50. ©2016 AACR. See related commentary by Talmadge, p. 3419


Pediatric Research | 2006

Cardiac Functional and Histopathologic Findings in Humans and Mice with Mucopolysaccharidosis Type I: Implications for Assessment of Therapeutic Interventions in Hurler Syndrome

Elizabeth Braunlin; Shannon Mackey-Bojack; Angela Panoskaltsis-Mortari; James M. Berry; Ron T. McElmurry; Megan Riddle; Li Yan Sun; Lorne A. Clarke; Jakub Tolar; Bruce R. Blazar

Hurler syndrome (mucopolysaccharidosis type I [MPS I]) is a uniformly lethal autosomal recessive storage disease caused by absence of the enzyme α-l-iduronidase (IDUA), which is involved in lysosomal degradation of sulfated glycosaminoglycans (GAGs). Cardiomyopathy and valvar insufficiency occur as GAGs accumulate in the myocardium, spongiosa of cardiac valves, and myointima of coronary arteries. Here we report the functional, biochemical, and morphologic cardiac findings in the MPS I mouse. We compare the cardiac functional and histopathological findings in the mouse to human MPS I. In MPS I mice, we have noted aortic insufficiency, increased left ventricular size, and decreased ventricular function. Aortic and mitral valves are thickened and the aortic root is dilated. However, murine MPS I is not identical to human MPS I. Myointimal proliferation of epicardial coronary arteries is unique to human MPS I, whereas dilation of aortic root appears unique to murine MPS I. Despite the differences between murine and human MPS I, the murine model provides reliable in vivo outcome parameters, such as thickened and insufficient aortic valves and depressed cardiac function that can be followed to assess the impact of therapeutic interventions in preclinical studies in Hurler syndrome.


Molecular Therapy | 2008

Targeting of the CNS in MPS-IH using a nonviral transferrin-α-L-iduronidase fusion gene product

Mark J. Osborn; Ron T. McElmurry; Brandon Peacock; Jakub Tolar; Bruce R. Blazar

Mucopolysaccharidosis type I (Hurler syndrome) is caused by a deficiency of the enzyme alpha-L-iduronidase (IDUA), and is characterized by widespread lysosomal glycosaminoglycan (GAG) accumulation. Successful treatment of central nervous system (CNS) diseases is limited by the presence of the blood-brain barrier, which prevents penetration of the therapeutic enzyme. Given that the brain capillary endothelial cells that form this barrier express high levels of the transferrin receptor (TfR), we hypothesized that the coupling of IDUA to transferrin (Tf) would facilitate IDUA delivery to the CNS. A plasmid bearing a fusion gene consisting of Tf and IDUA was constructed which, when delivered in vivo, resulted in the production of high levels of an enzymatically active protein that was transported into the CNS by TfR-mediated endocytosis. Short-term treatment resulted in a decrease in GAGs in the cerebellum of mucopolysaccharidosis type I (MPS I) mice. This approach, therefore, represents a potential strategy for the delivery of therapeutic enzyme to the CNS.Mucopolysaccharidosis type I (Hurler syndrome) is caused by a deficiency of the enzyme α-l-iduronidase (IDUA), and is characterized by widespread lysosomal glycosaminoglycan (GAG) accumulation. Successful treatment of central nervous system (CNS) diseases is limited by the presence of the blood-brain barrier, which prevents penetration of the therapeutic enzyme. Given that the brain capillary endothelial cells that form this barrier express high levels of the transferrin receptor (TfR), we hypothesized that the coupling of IDUA to transferrin (Tf) would facilitate IDUA delivery to the CNS. A plasmid bearing a fusion gene consisting of Tf and IDUA was constructed which, when delivered in vivo, resulted in the production of high levels of an enzymatically active protein that was transported into the CNS by TfR-mediated endocytosis. Short-term treatment resulted in a decrease in GAGs in the cerebellum of mucopolysaccharidosis type I (MPS I) mice. This approach, therefore, represents a potential strategy for the delivery of therapeutic enzyme to the CNS.


npj Regenerative Medicine | 2016

CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa

Beau R. Webber; Mark J. Osborn; Amber N. McElroy; Kirk Twaroski; Cara-lin Lonetree; Anthony P. Defeo; Lily Xia; Cindy R. Eide; Christopher J. Lees; Ron T. McElmurry; Megan Riddle; Chong Jai Kim; Dharmeshkumar Patel; Bruce R. Blazar; Jakub Tolar

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe disorder caused by mutations to the COL7A1 gene that deactivate production of a structural protein essential for skin integrity. Haematopoietic cell transplantation can ameliorate some of the symptoms; however, significant side effects from the allogeneic transplant procedure can occur and unresponsive areas of blistering persist. Therefore, we employed genome editing in patient-derived cells to create an autologous platform for multilineage engineering of therapeutic cell types. The clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system facilitated correction of an RDEB-causing COL7A1 mutation in primary fibroblasts that were then used to derive induced pluripotent stem cells (iPSCs). The resulting iPSCs were subsequently re-differentiated into keratinocytes, mesenchymal stem cells (MSCs) and haematopoietic progenitor cells using defined differentiation strategies. Gene-corrected keratinocytes exhibited characteristic epithelial morphology and expressed keratinocyte-specific genes and transcription factors. iPSC-derived MSCs exhibited a spindle morphology and expression of CD73, CD90 and CD105 with the ability to undergo adipogenic, chondrogenic and osteogenic differentiation in vitro in a manner indistinguishable from bone marrow-derived MSCs. Finally, we used a vascular induction strategy to generate potent definitive haematopoietic progenitors capable of multilineage differentiation in methylcellulose-based assays. In totality, we have shown that CRISPR/Cas9 is an adaptable gene-editing strategy that can be coupled with iPSC technology to produce multiple gene-corrected autologous cell types with therapeutic potential for RDEB.


JCI insight | 2018

Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect

Martin Felices; Alexander J. Lenvik; Ron T. McElmurry; Sami Chu; Peter Hinderlie; Laura Bendzick; Melissa A. Geller; Jakub Tolar; Bruce R. Blazar; Jeffrey S. Miller

NK cell-based immunotherapies have been gaining traction in the clinic for treatment of cancer. IL-15 is currently being used in number of clinical trials to improve NK cell expansion and function. The objective of this study is to evaluate the effect of repetitive IL-15 exposure on NK cells. An in vitro model in which human NK cells are continuously (on on on) or intermittently (on off on) treated with IL-15 was used to explore this question. After treatment, cells were evaluated for proliferation, survival, cell cycle gene expression, function, and metabolic processes. Our data indicate that continuous treatment of NK cells with IL-15 resulted in decreased viability and a cell cycle arrest gene expression pattern. This was associated with diminished signaling, decreased function both in vitro and in vivo, and reduced tumor control. NK cells continuously treated with IL-15 also displayed a reduced mitochondrial respiration profile when compared with NK cells treated intermittently with IL-15. This profile was characterized by a decrease in the spare respiratory capacity that was dependent on fatty acid oxidation (FAO). Limiting the strength of IL-15 signaling via utilization of an mTOR inhibitor rescued NK cell functionality in the group continuously treated with IL-15. The findings presented here show that human NK cells continuously treated with IL-15 undergo a process consistent with exhaustion that is accompanied by a reduction in FAO. These findings should inform IL-15-dosing strategies in NK cell cancer immunotherapeutic settings.

Collaboration


Dive into the Ron T. McElmurry's collaboration.

Top Co-Authors

Avatar

Jakub Tolar

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Riddle

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Lily Xia

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Bell

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge