Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Osborn is active.

Publication


Featured researches published by Mark J. Osborn.


Stem Cells | 2007

Sarcoma derived from cultured mesenchymal stem cells

Jakub Tolar; Alma J. Nauta; Mark J. Osborn; Angela Mortari; Ron T. McElmurry; Scott Bell; Lily Xia; Ning Zhou; Megan Riddle; Tania M. Schroeder; Jennifer J. Westendorf; R. Scott McIvor; Pancras C.W. Hogendoorn; Karoly Szuhai; LeAnn Oseth; Betsy Hirsch; Stephen R. Yant; Mark A. Kay; Alexandra Peister; Darwin J. Prockop; Willem E. Fibbe; Bruce R. Blazar

To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole‐body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain‐specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon‐related genetic abnormality, and p53 was not overexpressed. Infusion of MSC‐derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.


The New England Journal of Medicine | 2010

Bone Marrow Transplantation for Recessive Dystrophic Epidermolysis Bullosa

John E. Wagner; Akemi Ishida-Yamamoto; John A. McGrath; Maria K. Hordinsky; Douglas R. Keene; Megan Riddle; Mark J. Osborn; Troy C. Lund; Michelle Dolan; Bruce R. Blazar; Jakub Tolar

BACKGROUND Recessive dystrophic epidermolysis bullosa is an incurable, often fatal mucocutaneous blistering disease caused by mutations in COL7A1, the gene encoding type VII collagen (C7). On the basis of preclinical data showing biochemical correction and prolonged survival in col7 −/− mice, we hypothesized that allogeneic marrow contains stem cells capable of ameliorating the manifestations of recessive dystrophic epidermolysis bullosa in humans. METHODS Between October 2007 and August 2009, we treated seven children who had recessive dystrophic epidermolysis bullosa with immunomyeloablative chemotherapy and allogeneic stem-cell transplantation. We assessed C7 expression by means of immunofluorescence staining and used transmission electron microscopy to visualize anchoring fibrils. We measured chimerism by means of competitive polymerase-chain-reaction assay, and documented blister formation and wound healing with the use of digital photography. RESULTS One patient died of cardiomyopathy before transplantation. Of the remaining six patients, one had severe regimen-related cutaneous toxicity, with all having improved wound healing and a reduction in blister formation between 30 and 130 days after transplantation. We observed increased C7 deposition at the dermal-epidermal junction in five of the six recipients, albeit without normalization of anchoring fibrils. Five recipients were alive 130 to 799 days after transplantation; one died at 183 days as a consequence of graft rejection and infection. The six recipients had substantial proportions of donor cells in the skin, and none had detectable anti-C7 antibodies. CONCLUSIONS Increased C7 deposition and a sustained presence of donor cells were found in the skin of children with recessive dystrophic epidermolysis bullosa after allogeneic bone marrow transplantation. Further studies are needed to assess the long-term risks and benefits of such therapy in patients with this disorder. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00478244.)


Molecular Therapy | 2013

TALEN-based gene correction for epidermolysis bullosa.

Mark J. Osborn; Colby G. Starker; Amber N. McElroy; Beau R. Webber; Megan Riddle; Lily Xia; Anthony P. Defeo; Richard Gabriel; Manfred Schmidt; Christof von Kalle; Daniel F. Carlson; Morgan L. Maeder; J. Keith Joung; John E. Wagner; Daniel F. Voytas; Bruce R. Blazar; Jakub Tolar

Recessive dystrophic epidermolysis bullosa (RDEB) is characterized by a functional deficit of type VII collagen protein due to gene defects in the type VII collagen gene (COL7A1). Gene augmentation therapies are promising, but run the risk of insertional mutagenesis. To abrogate this risk, we explored the possibility of using engineered transcription activator-like effector nucleases (TALEN) for precise genome editing. We report the ability of TALEN to induce site-specific double-stranded DNA breaks (DSBs) leading to homology-directed repair (HDR) from an exogenous donor template. This process resulted in COL7A1 gene mutation correction in primary fibroblasts that were subsequently reprogrammed into inducible pluripotent stem cells and showed normal protein expression and deposition in a teratoma-based skin model in vivo. Deep sequencing-based genome-wide screening established a safety profile showing on-target activity and three off-target (OT) loci that, importantly, were at least 10 kb from a coding sequence. This study provides proof-of-concept for TALEN-mediated in situ correction of an endogenous patient-specific gene mutation and used an unbiased screen for comprehensive TALEN target mapping that will cooperatively facilitate translational application.


Blood | 2008

Amelioration of epidermolysis bullosa by transfer of wild-type bone marrow cells

Jakub Tolar; Akemi Ishida-Yamamoto; Megan Riddle; Ron T. McElmurry; Mark J. Osborn; Lily Xia; Troy C. Lund; Catherine Slattery; Jouni Uitto; Angela M. Christiano; John E. Wagner; Bruce R. Blazar

The recessive dystrophic form of epidermolysis bullosa (RDEB) is a disorder of incurable skin fragility and blistering caused by mutations in the type VII collagen gene (Col7a1). The absence of type VII collagen production leads to the loss of adhesion at the basement membrane zone due to the absence of anchoring fibrils, which are composed of type VII collagen. We report that wild-type, congenic bone marrow cells homed to damaged skin, produced type VII collagen protein and anchoring fibrils, ameliorated skin fragility, and reduced lethality in the murine model of RDEB generated by targeted Col7a1 disruption. These data provide the first evidence that a population of marrow cells can correct the basement membrane zone defect found in mice with RDEB and offer a potentially valuable approach for treatment of human RDEB and other extracellular matrix disorders.


Journal of Investigative Dermatology | 2011

Induced Pluripotent Stem Cells from Individuals with Recessive Dystrophic Epidermolysis Bullosa

Jakub Tolar; Lily Xia; Megan Riddle; Christopher J. Lees; Cindy R. Eide; Ron T. McElmurry; Matthias Titeux; Mark J. Osborn; Troy C. Lund; Alain Hovnanian; John E. Wagner; Bruce R. Blazar

Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited blistering skin disorder caused by mutations in the COL7A1 gene-encoding type VII collagen (Col7), the major component of anchoring fibrils at the dermal-epidermal junction. Individuals with RDEB develop painful blisters and mucosal erosions, and currently, there are no effective forms of therapy. Nevertheless, some advances in patient therapy are being made, and cell-based therapies with mesenchymal and hematopoietic cells have shown promise in early clinical trials. To establish a foundation for personalized, gene-corrected, patient-specific cell transfer, we generated induced pluripotent stem (iPS) cells from three subjects with RDEB (RDEB iPS cells). We found that Col7 was not required for stem cell renewal and that RDEB iPS cells could be differentiated into both hematopoietic and nonhematopoietic lineages. The specific epigenetic profile associated with de-differentiation of RDEB fibroblasts and keratinocytes into RDEB iPS cells was similar to that observed in wild-type (WT) iPS cells. Importantly, human WT and RDEB iPS cells differentiated in vivo into structures resembling the skin. Gene-corrected RDEB iPS cells expressed Col7. These data identify the potential of RDEB iPS cells to generate autologous hematopoietic grafts and skin cells with the inherent capacity to treat skin and mucosal erosions that typify this genodermatosis.


PLOS ONE | 2012

Targeting G with TAL Effectors: A Comparison of Activities of TALENs Constructed with NN and NK Repeat Variable Di-Residues

Michelle Christian; Zachary L. Demorest; Colby G. Starker; Mark J. Osborn; Michael D. Nyquist; Yong Zhang; Daniel F. Carlson; Philip Bradley; Adam J. Bogdanove; Daniel F. Voytas

The DNA binding domain of Transcription Activator-Like (TAL) effectors can easily be engineered to have new DNA sequence specificities. Consequently, engineered TAL effector proteins have become important reagents for manipulating genomes in vivo. DNA binding by TAL effectors is mediated by arrays of 34 amino acid repeats. In each repeat, one of two amino acids (repeat variable di-residues, RVDs) contacts a base in the DNA target. RVDs with specificity for C, T and A have been described; however, among RVDs that target G, the RVD NN also binds A, and NK is rare among naturally occurring TAL effectors. Here we show that TAL effector nucleases (TALENs) made with NK to specify G have less activity than their NN-containing counterparts: fourteen of fifteen TALEN pairs made with NN showed more activity in a yeast recombination assay than otherwise identical TALENs made with NK. Activity was assayed for three of these TALEN pairs in human cells, and the results paralleled the yeast data. The in vivo data is explained by in vitro measurements of binding affinity demonstrating that NK-containing TAL effectors have less affinity for targets with G than their NN-containing counterparts. On targets for which G was substituted with A, higher G-specificity was observed for NK-containing TALENs. TALENs with different N- and C-terminal truncations were also tested on targets that differed in the length of the spacer between the two TALEN binding sites. TALENs with C-termini of either 63 or 231 amino acids after the repeat array cleaved targets across a broad range of spacer lengths – from 14 to 33 bp. TALENs with only 18 aa after the repeat array, however, showed a clear optimum for spacers of 13 to 16 bp. The data presented here provide useful guidelines for increasing the specificity and activity of engineered TAL effector proteins.


Molecular Therapy | 2011

Minicircle DNA-based gene therapy coupled with immune modulation permits long-term expression of α-L-iduronidase in mice with mucopolysaccharidosis type I.

Mark J. Osborn; Ron T. McElmurry; Christopher J. Lees; Anthony P. Defeo; Zhi-Ying Chen; Mark A. Kay; Luigi Naldini; Gordon J. Freeman; Jakub Tolar; Bruce R. Blazar

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease characterized by mutations to the α-L-iduronidase (IDUA) gene resulting in inactivation of the IDUA enzyme. The loss of IDUA protein results in the progressive accumulation of glycosaminoglycans within the lysosomes resulting in severe, multi-organ system pathology. Gene replacement strategies have relied on the use of viral or nonviral gene delivery systems. Drawbacks to these include laborious production procedures, poor efficacy due to plasmid-borne gene silencing, and the risk of insertional mutagenesis. This report demonstrates the efficacy of a nonintegrating, minicircle (MC) DNA vector that is resistant to epigenetic gene silencing in vivo. To achieve sustained expression of the immunogenic IDUA protein we investigated the use of a tissue-specific promoter in conjunction with microRNA target sequences. The inclusion of microRNA target sequences resulted in a slight improvement in long-term expression compared to their absence. However, immune modulation by costimulatory blockade was required and permitted for IDUA expression in MPS I mice that resulted in the biochemical correction of pathology in all of the organs analyzed. MC gene delivery combined with costimulatory pathway blockade maximizes safety, efficacy, and sustained gene expression and is a new approach in the treatment of lysosomal storage disease.


Blood | 2011

Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome)

Jakub Tolar; In-Hyun Park; Lily Xia; Christopher J. Lees; Brandon Peacock; Beau R. Webber; Ron T. McElmurry; Cindy R. Eide; Paul J. Orchard; Michael Kyba; Mark J. Osborn; Troy C. Lund; John E. Wagner; George Q. Daley; Bruce R. Blazar

Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a congenital deficiency of α-L-iduronidase, leading to lysosomal storage of glycosaminoglycans that is ultimately fatal following an insidious onset after birth. Hematopoietic cell transplantation (HCT) is a life-saving measure in MPS IH. However, because a suitable hematopoietic donor is not found for everyone, because HCT is associated with significant morbidity and mortality, and because there is no known benefit of immune reaction between the host and the donor cells in MPS IH, gene-corrected autologous stem cells may be the ideal graft for HCT. Thus, we generated induced pluripotent stem cells from 2 patients with MPS IH (MPS-iPS cells). We found that α-L-iduronidase was not required for stem cell renewal, and that MPS-iPS cells showed lysosomal storage characteristic of MPS IH and could be differentiated to both hematopoietic and nonhematopoietic cells. The specific epigenetic profile associated with de-differentiation of MPS IH fibroblasts into MPS-iPS cells was maintained when MPS-iPS cells are gene-corrected with virally delivered α-L-iduronidase. These data underscore the potential of MPS-iPS cells to generate autologous hematopoietic grafts devoid of immunologic complications of allogeneic transplantation, as well as generating nonhematopoietic cells with the potential to treat anatomical sites not fully corrected with HCT.


Human Gene Therapy | 2015

Fanconi Anemia Gene Editing by the CRISPR/Cas9 System

Mark J. Osborn; Richard Gabriel; Beau R. Webber; Anthony P. Defeo; Amber N. McElroy; Jordan Jarjour; Colby G. Starker; John E. Wagner; J. Keith Joung; Daniel F. Voytas; Christof von Kalle; Manfred Schmidt; Bruce R. Blazar; Jakub Tolar

Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder.


Journal of Investigative Dermatology | 2014

Patient-Specific Naturally Gene-Reverted Induced Pluripotent Stem Cells in Recessive Dystrophic Epidermolysis Bullosa

Jakub Tolar; John A. McGrath; Lily Xia; Megan Riddle; Christopher J. Lees; Cindy R. Eide; Douglas R. Keene; Lu Liu; Mark J. Osborn; Troy C. Lund; Bruce R. Blazar; John E. Wagner

Spontaneous reversion of disease-causing mutations has been observed in some genetic disorders. In our clinical observations of severe generalized recessive dystrophic epidermolysis bullosa (RDEB), a currently incurable blistering genodermatosis caused by loss-of-function mutations in COL7A1 that results in a deficit of type VII collagen (C7), we have observed patches of healthy-appearing skin on some individuals. When biopsied, this skin revealed somatic mosaicism resulting from the self-correction of C7 deficiency. We believe this source of cells could represent an opportunity for translational “natural” gene therapy. We show that revertant RDEB keratinocytes expressing functional C7 can be reprogrammed into induced pluripotent stem cells (iPSCs) and that self-corrected RDEB iPSCs can be induced to differentiate into either epidermal or hematopoietic cell populations. Our results give proof in principle that an inexhaustible supply of functional patient-specific revertant cells can be obtained—potentially relevant to local wound therapy and systemic hematopoietic cell transplantation. This technology may also avoid some of the major limitations of other cell therapy strategies, e.g., immune rejection and insertional mutagenesis, which are associated with viral- and nonviral- mediated gene therapy. We believe this approach should be the starting point for autologous cellular therapies using “natural” gene therapy in RDEB and other diseases.

Collaboration


Dive into the Mark J. Osborn's collaboration.

Top Co-Authors

Avatar

Jakub Tolar

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Riddle

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lily Xia

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas R. Keene

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge