Ronald E. Painter
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronald E. Painter.
Nature | 2006
Jun Wang; Stephen M. Soisson; Katherine Young; Wesley L. Shoop; Srinivas Kodali; Andrew Galgoci; Ronald E. Painter; Gopalakrishnan Parthasarathy; Yui S. Tang; Richard D. Cummings; Sookhee Ha; Karen Dorso; Mary Motyl; Hiranthi Jayasuriya; John G. Ondeyka; Kithsiri Herath; Chaowei Zhang; Lorraine D. Hernandez; John J. Allocco; Angela Basilio; José R. Tormo; Olga Genilloud; Francisca Vicente; Fernando Pelaez; Lawrence F. Colwell; Sang Ho Lee; Bruce Michael; Thomas J. Felcetto; Charles Gill; Lynn L. Silver
Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of β-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.
Antimicrobial Agents and Chemotherapy | 2004
Neil Woodford; Philip M. Tierno; Katherine Young; Luke Tysall; Marie-France I. Palepou; Elaina Ward; Ronald E. Painter; Deborah F. Suber; Daniel Shungu; Lynn L. Silver; Kenneth Inglima; John Kornblum; David M. Livermore
ABSTRACT From April 2000 to April 2001, 24 patients in intensive care units at Tisch Hospital, New York, N.Y., were infected or colonized by carbapenem-resistant Klebsiella pneumoniae. Pulsed-field gel electrophoresis identified a predominant outbreak strain, but other resistant strains were also recovered. Three representatives of the outbreak strain from separate patients were studied in detail. All were resistant or had reduced susceptibility to imipenem, meropenem, ceftazidime, piperacillin-tazobactam, and gentamicin but remained fully susceptible to tetracycline. PCR amplified a blaKPC allele encoding a novel variant, KPC-3, with a His(272)→Tyr substitution not found in KPC-2; other carbapenemase genes were absent. In the outbreak strain, KPC-3 was encoded by a 75-kb plasmid, which was transferred in vitro by electroporation and conjugation. The isolates lacked the OmpK35 porin but expressed OmpK36, implying reduced permeability as a cofactor in resistance. This is the third KPC carbapenem-hydrolyzing β-lactamase variant to have been reported in members of the Enterobacteriaceae, with others reported from the East Coast of the United States. Although producers of these enzymes remain rare, the progress of this enzyme group merits monitoring.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Jun Wang; Srinivas Kodali; Sang Ho Lee; Andrew Galgoci; Ronald E. Painter; Karen Dorso; Fred Racine; Mary Motyl; Lorraine D. Hernandez; Elizabeth Tinney; Steven L. Colletti; Kithsiri Herath; Richard D. Cummings; Oscar Salazar; Ignacio González; Angela Basilio; Francisca Vicente; Olga Genilloud; Fernando Pelaez; Hiranthi Jayasuriya; Katherine Young; Doris F. Cully; Sheo B. Singh
Emergence of bacterial resistance is a major issue for all classes of antibiotics; therefore, the identification of new classes is critically needed. Recently we reported the discovery of platensimycin by screening natural product extracts using a target-based whole-cell strategy with antisense silencing technology in concert with cell free biochemical validations. Continued screening efforts led to the discovery of platencin, a novel natural product that is chemically and biologically related but different from platensimycin. Platencin exhibits a broad-spectrum Gram-positive antibacterial activity through inhibition of fatty acid biosynthesis. It does not exhibit cross-resistance to key antibiotic resistant strains tested, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant Enterococci. Platencin shows potent in vivo efficacy without any observed toxicity. It targets two essential proteins, β-ketoacyl-[acyl carrier protein (ACP)] synthase II (FabF) and III (FabH) with IC50 values of 1.95 and 3.91 μg/ml, respectively, whereas platensimycin targets only FabF (IC50 = 0.13 μg/ml) in S. aureus, emphasizing the fact that more antibiotics with novel structures and new modes of action can be discovered by using this antisense differential sensitivity whole-cell screening paradigm.
Antimicrobial Agents and Chemotherapy | 2006
Katherine Young; Hiranthi Jayasuriya; John G. Ondeyka; Kithsiri Herath; Chaowei Zhang; Srinivas Kodali; Andrew Galgoci; Ronald E. Painter; Vickie Brown-Driver; Robert T. Yamamoto; Lynn L. Silver; Yingcong Zheng; Judith I. Ventura; Janet M. Sigmund; Sookhee Ha; Angela Basilio; Francisca Vicente; José R. Tormo; Fernando Pelaez; Phil Youngman; Doris F. Cully; John F. Barrett; Dennis M. Schmatz; Sheo B. Singh; Jun Wang
ABSTRACT Condensing enzymes are essential in type II fatty acid synthesis and are promising targets for antibacterial drug discovery. Recently, a new approach using a xylose-inducible plasmid to express antisense RNA in Staphylococcus aureus has been described; however, the actual mechanism was not delineated. In this paper, the mechanism of decreased target protein production by expression of antisense RNA was investigated using Northern blotting. This revealed that the antisense RNA acts posttranscriptionally by targeting mRNA, leading to 5′ mRNA degradation. Using this technology, a two-plate assay was developed in order to identify FabF/FabH target-specific cell-permeable inhibitors by screening of natural product extracts. Over 250,000 natural product fermentation broths were screened and then confirmed in biochemical assays, yielding a hit rate of 0.1%. All known natural product FabH and FabF inhibitors, including cerulenin, thiolactomycin, thiotetromycin, and Tü3010, were discovered using this whole-cell mechanism-based screening approach. Phomallenic acids, which are new inhibitors of FabF, were also discovered. These new inhibitors exhibited target selectivity in the gel elongation assay and in the whole-cell-based two-plate assay. Phomallenic acid C showed good antibacterial activity, about 20-fold better than that of thiolactomycin and cerulenin, against S. aureus. It exhibited a spectrum of antibacterial activity against clinically important pathogens including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, and Haemophilus influenzae.
Nature | 2015
John A. Howe; Hao Wang; Thierry O. Fischmann; Carl J. Balibar; Li Xiao; Andrew Galgoci; Juliana C. Malinverni; Todd W. Mayhood; Artjohn Villafania; Ali Nahvi; Nicholas J. Murgolo; Christopher M. Barbieri; Paul A. Mann; Donna Carr; Ellen Xia; Paul Zuck; Daniel Riley; Ronald E. Painter; Scott S. Walker; Brad Sherborne; Reynalda de Jesus; Weidong Pan; Michael A. Plotkin; Jin Wu; Diane Rindgen; John H. Cummings; Charles G. Garlisi; Rumin Zhang; Payal R. Sheth; Charles Gill
Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.
Journal of Biological Chemistry | 2005
Srinivas Kodali; Andrew Galgoci; Katherine Young; Ronald E. Painter; Lynn L. Silver; Kithsiri Herath; Sheo B. Singh; Doris F. Cully; John F. Barrett; Dennis M. Schmatz; Jun Wang
Type II fatty acid synthesis (FASII) is essential to bacterial cell viability and is a promising target for the development of novel antibiotics. In the past decade, a few inhibitors have been identified for this pathway, but none of them lend themselves to drug development. To find better inhibitors that are potential drug candidates, we developed a high throughput assay that identifies inhibitors simultaneously against multiple targets within the FASII pathway of most bacterial pathogens. We demonstrated that the inverse t½ value of the FASII enzyme-catalyzed reaction gives a measure of FASII activity. The Km values of octanoyl-CoA and lauroyl-CoA were determined to be 1.1 ± 0.3 and 10 ± 2.7 μm in Staphylococcus aureus and Bacillus subtilis, respectively. The effects of free metals and reducing agents on enzyme activity showed an inhibition hierarchy of Zn2+ > Ca2+ > Mn2+ > Mg2+; no inhibition was found with β-mercaptoethanol or dithiothreitol. We used this assay to screen the natural product libraries and isolated an inhibitor, bischloroanthrabenzoxocinone (BABX) with a new structure. BABX showed IC50 values of 11.4 and 35.3 μg/ml in the S. aureus and Escherichia coli FASII assays, respectively, and good antibacterial activities against S. aureus and permeable E. coli strains with minimum inhibitory concentrations ranging from 0.2 to 0.4 μg/ml. Furthermore, the effectiveness, selectivity, and the in vitro and in vivo correlations of BABX as well as other fatty acid inhibitors were elucidated, which will aid in future drug discovery.
Chemistry & Biology | 2009
Joann Huber; Robert G.K. Donald; Sang Ho Lee; Lisa Wang Jarantow; Michael J. Salvatore; Xin Meng; Ronald E. Painter; Russell Onishi; James Occi; Karen Dorso; Katherine Young; Young Whan Park; Stephen Skwish; Michael J. Szymonifka; Tim S. Waddell; Lynn Miesel; John W. Phillips; Terry Roemer
Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial and community-acquired pathogen for which few existing antibiotics are efficacious. Here we describe two structurally related synthetic compounds that potentiate beta-lactam activity against MRSA. Genetic studies indicate that these agents target SAV1754 based on the following observations: (i) it has a unique chemical hypersensitivity profile, (ii) overexpression or point mutations are sufficient to confer resistance, and (iii) genetic inactivation phenocopies the potentiating effect of these agents in combination with beta-lactams. Further, we demonstrate these agents inhibit peptidoglycan synthesis. Because SAV1754 is essential for growth and structurally related to the recently reported peptidoglycan flippase of Escherichia coli, we speculate it performs an analogous function in S. aureus. These results suggest that SAV1754 inhibitors might possess therapeutic potential alone, or in combination with beta-lactams to restore MRSA efficacy.
Bioorganic & Medicinal Chemistry Letters | 2014
Timothy A. Blizzard; Helen Chen; Seongkon Kim; Jane Y. Wu; Rena Bodner; Candido Gude; Jason E. Imbriglio; Katherine Young; Young-Whan Park; Aimie M. Ogawa; Susan L. Raghoobar; Nichelle Hairston; Ronald E. Painter; Doug Wisniewski; Giovanna Scapin; Paula M. D. Fitzgerald; Nandini Sharma; Jun Lu; Sookhee Ha; Jeff Hermes; Milton L. Hammond
β-Lactamase inhibitors with a bicyclic urea core and a variety of heterocyclic side chains were prepared and evaluated as potential partners for combination with imipenem to overcome class A and C β-lactamase mediated antibiotic resistance. The piperidine analog 3 (MK-7655) inhibited both class A and C β-lactamases in vitro. It effectively restored imipenems activity against imipenem-resistant Pseudomonas and Klebsiella strains at clinically achievable concentrations. A combination of MK-7655 and Primaxin® is currently in phase II clinical trials for the treatment of Gram-negative bacterial infections.
Antimicrobial Agents and Chemotherapy | 2012
Alex G. Therien; Joann Huber; Kenneth E. Wilson; Patrick Beaulieu; Alexandre Caron; David Claveau; Kathleen Deschamps; Robert G. K. Donald; Andrew Galgoci; Michel Gallant; Xin Gu; Nancy J. Kevin; Josiane Lafleur; Penny S. Leavitt; Christian Lebeau-Jacob; Suzy Lee; Molly M. Lin; Anna A. Michels; Aimie M. Ogawa; Ronald E. Painter; Craig A. Parish; Young-Whan Park; Liliana L. Benton-Perdomo; Mihai Petcu; John W. Phillips; Mary Ann Powles; Kathryn Skorey; John Tam; Christopher M. Tan; Katherine Young
ABSTRACT The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all β-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of β-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to β-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with β-lactams by preventing the signal peptidase-mediated secretion of proteins required for β-lactam resistance. Combinations of SpsB inhibitors and β-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to β-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.
Science | 2017
Robert W. Myers; Hong-Ping Guan; Juliann Ehrhart; Aleksandr Petrov; Srinivasa Prahalada; Effie Tozzo; Xiaodong Yang; Marc M. Kurtz; Maria E. Trujillo; Dinko Gonzalez Trotter; Danqing Feng; Shiyao Xu; George J. Eiermann; Marie A. Holahan; Daniel Rubins; Stacey Conarello; Xiaoda Niu; Sandra C. Souza; Corin Miller; Jinqi Liu; Ku Lu; Wen Feng; Ying Li; Ronald E. Painter; James A. Milligan; Huaibing He; Franklin Liu; Aimie M. Ogawa; Douglas Wisniewski; Rory J. Rohm
Hitting a dozen enzymes with one drug The adenosine monophosphate-activated protein kinase (AMPK) controls cellular energy status. AMPK is activated when energy levels fall. This stimulates adenosine triphosphate (ATP)-generating pathways that promote glucose uptake and inhibits ATP-consuming pathways associated with glucose synthesis. In principle, these effects would be beneficial in metabolic diseases, including diabetes. Pharmacological activation of AMPK has been challenging, however, because in mammals, the enzyme exists as 12 distinct complexes. Myers et al. describe an orally available compound (MK-8722) that activates all 12 complexes (see the Perspective by Hardie). In animal models, MK-8722 ameliorated diabetes, but it also caused enlargement of the heart. MK-8722 may be a useful tool compound for laboratory research on AMPK function. Science, this issue p. 507; see also p. 455 In animals, a drug activating all 12 isoforms of the energy regulator AMPK benefits metabolism but may pose heart risks. 5′-Adenosine monophosphate–activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722–mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.