Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald G. Collman is active.

Publication


Featured researches published by Ronald G. Collman.


Cell | 1996

A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion Cofactors

Benjamin J. Doranz; Joseph Rucker; Yanjie Yi; Michel Samson; Stephen C. Peiper; Marc Parmentier; Ronald G. Collman; Robert W. Doms

Here, we show that the beta-chemokine receptor CKR-5 serves as a cofactor for M-tropic HIV viruses. Expression of CKR-5 with CD4 enables nonpermissive cells to form syncytia with cells expressing M-tropic, but not T-tropic, HIV-1 env proteins. Expression of CKR-5 and CD4 enables entry of a M-tropic, but not a T-tropic, virus strain. A dual-tropic primary HIV-1 isolate (89.6) utilizes both Fusin and CKR-5 as entry cofactors. Cells expressing the 89.6 env protein form syncytia with QT6 cells expressing CD4 and either Fusin or CKR-5. The beta-chemokine receptors CKR-3 and CKR-2b support HIV-1 89.6 env-mediated syncytia formation but do not support fusion by any of the T-tropic or M-tropic strains tested. Our results suggest that the T-tropic viruses characteristic of disease progression may evolve from purely M-tropic viruses prevalent early in virus infection through changes in the env protein that enable the virus to use multiple entry cofactors.


Nature Medicine | 2002

siRNA-directed inhibition of HIV-1 infection.

Carl D. Novina; Michael F. Murray; Derek M. Dykxhoorn; Paul J. Beresford; Jonathan W. Riess; Sang Kyung Lee; Ronald G. Collman; Judy Lieberman; Premlata Shankar; Phillip A. Sharp

RNA interference silences gene expression through short interfering 21–23-mer double-strand RNA segments that guide mRNA degradation in a sequence-specific fashion. Here we report that siRNAs inhibit virus production by targeting the mRNAs for either the HIV-1 cellular receptor CD4, the viral structural Gag protein or green fluorescence protein substituted for the Nef regulatory protein. siRNAs effectively inhibit pre- and/or post-integration infection events in the HIV-1 life cycle. Thus, siRNAs may have potential for therapeutic intervention in HIV-1 and other viral infections.


Nature Immunology | 2011

Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus

Laurel A. Monticelli; Gregory F. Sonnenberg; Michael C. Abt; Theresa Alenghat; Carly G.K. Ziegler; Travis A. Doering; Jill M. Angelosanto; Brian J. Laidlaw; Cliff Y Yang; Taheri Sathaliyawala; Masaru Kubota; Damian Turner; Joshua M. Diamond; Ananda W. Goldrath; Donna L. Farber; Ronald G. Collman; E. John Wherry; David Artis

Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor α-chain (CD25), IL-7 receptor α-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.


American Journal of Respiratory and Critical Care Medicine | 2011

Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract

Emily S. Charlson; Kyle Bittinger; Andrew R. Haas; Ayannah S. Fitzgerald; Ian Frank; Anjana Yadav; Frederic D. Bushman; Ronald G. Collman

RATIONALE Defining the biogeography of bacterial populations in human body habitats is a high priority for understanding microbial-host relationships in health and disease. The healthy lung was traditionally considered sterile, but this notion has been challenged by emerging molecular approaches that enable comprehensive examination of microbial communities. However, studies of the lung are challenging due to difficulties in working with low biomass samples. OBJECTIVES Our goal was to use molecular methods to define the bacterial microbiota present in the lungs of healthy individuals and assess its relationship to upper airway populations. METHODS We sampled respiratory flora intensively at multiple sites in six healthy individuals. The upper tract was sampled by oral wash and oro-/nasopharyngeal swabs. Two bronchoscopes were used to collect samples up to the glottis, followed by serial bronchoalveolar lavage and lower airway protected brush. Bacterial abundance and composition were analyzed by 16S rDNA Q-PCR and deep sequencing. MEASUREMENTS AND MAIN RESULTS Bacterial communities from the lung displayed composition indistinguishable from the upper airways, but were 2 to 4 logs lower in biomass. Lung-specific sequences were rare and not shared among individuals. There was no unique lung microbiome. CONCLUSIONS In contrast to other organ systems, the respiratory tract harbors a homogenous microbiota that decreases in biomass from upper to lower tract. The healthy lung does not contain a consistent distinct microbiome, but instead contains low levels of bacterial sequences largely indistinguishable from upper respiratory flora. These findings establish baseline data for healthy subjects and sampling approaches for sequence-based analysis of diseases.


Science | 2012

Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria

Gregory F. Sonnenberg; Laurel A. Monticelli; Theresa Alenghat; Thomas C. Fung; Natalie A. Hutnick; Jun Kunisawa; Naoko Shibata; Stephanie Grunberg; Rohini Sinha; Adam M. Zahm; Mélanie R. Tardif; Taheri Sathaliyawala; Masaru Kubota; Donna L. Farber; Ronald G. Collman; Abraham Shaked; Lynette A. Fouser; David B. Weiner; Philippe A. Tessier; Joshua R. Friedman; Hiroshi Kiyono; Frederic D. Bushman; Kyong-Mi Chang; David Artis

Protecting Against a Barrier Breach In order to coexist peacefully, a “firewall” exists that keeps the commensal bacteria that reside in our intestines and associated lymphoid tissue contained. Several diseases and infections, however, lead to a breach in this barrier, which leads to chronic inflammation and pathology. Sonnenberg et al. (p. 1321) found that in mice, innate lymphoid cells (ILCs) are critically important for the anatomical containment of commensal bacteria in an interleukin-22 (IL-22)–dependent manner. ILC depletion or blockade of IL-22 led to loss of bacterial containment and systemic inflammation. Lymphocytes prevent bacteria from spreading beyond gut-associated lymphoid tissues and causing systemic inflammation. The mammalian intestinal tract is colonized by trillions of beneficial commensal bacteria that are anatomically restricted to specific niches. However, the mechanisms that regulate anatomical containment remain unclear. Here, we show that interleukin-22 (IL-22)–producing innate lymphoid cells (ILCs) are present in intestinal tissues of healthy mammals. Depletion of ILCs resulted in peripheral dissemination of commensal bacteria and systemic inflammation, which was prevented by administration of IL-22. Disseminating bacteria were identified as Alcaligenes species originating from host lymphoid tissues. Alcaligenes was sufficient to promote systemic inflammation after ILC depletion in mice, and Alcaligenes-specific systemic immune responses were associated with Crohn’s disease and progressive hepatitis C virus infection in patients. Collectively, these data indicate that ILCs regulate selective containment of lymphoid-resident bacteria to prevent systemic inflammation associated with chronic diseases.


Nature Methods | 2011

Bayesian community-wide culture-independent microbial source tracking

Dan Knights; Justin Kuczynski; Emily S. Charlson; Jesse Zaneveld; Michael C. Mozer; Ronald G. Collman; Frederic D. Bushman; Rob Knight; Scott T. Kelley

Contamination is a critical issue in high-throughput metagenomic studies, yet progress toward a comprehensive solution has been limited. We present SourceTracker, a Bayesian approach to estimate the proportion of contaminants in a given community that come from possible source environments. We applied SourceTracker to microbial surveys from neonatal intensive care units (NICUs), offices and molecular biology laboratories, and provide a database of known contaminants for future testing.


Cell | 1996

Regions in β-Chemokine Receptors CCR5 and CCR2b That Determine HIV-1 Cofactor Specificity

Joseph Rucker; Michel Samson; Benjamin J. Doranz; Frédérick Libert; Joanne F. Berson; Yanjie Yi; Ronald G. Collman; Christopher C. Broder; Gilbert Vassart; Robert W. Doms; Marc Parmentier

Macrophage-tropic (M-tropic) HIV-1 strains use the beta-chemokine receptor CCR5, but not CCR2b, as a cofactor for membrane fusion and infection, while the dual-tropic strain 89.6 uses both. CCR5/2b chimeras and mutants were used to map regions of CCR5 important for cofactor function and specificity. M-tropic strains required either the amino-terminal domain or the first extracellular loop of CCR5. A CCR2b chimera containing the first 20 N-terminal residues of CCR5 supported M-tropic envelope protein fusion. Amino-terminal truncations of CCR5/CCR2b chimeras indicated that residues 2-5 are important for M-tropic viruses, while 89.6 is dependent on residues 6-9. The identification of multiple functionally important regions in CCR5, coupled with differences in how CCR5 is used by M- and dual-tropic viruses, suggests that interactions between HIV-1 and entry cofactors are conformationally complex.


Bioinformatics | 2012

Associating microbiome composition with environmental covariates using generalized UniFrac distances

Jun Chen; Kyle Bittinger; Emily S. Charlson; Christian Hoffmann; James D. Lewis; Gary D. Wu; Ronald G. Collman; Frederic D. Bushman; Hongzhe Li

Motivation: The human microbiome plays an important role in human disease and health. Identification of factors that affect the microbiome composition can provide insights into disease mechanism as well as suggest ways to modulate the microbiome composition for therapeutical purposes. Distance-based statistical tests have been applied to test the association of microbiome composition with environmental or biological covariates. The unweighted and weighted UniFrac distances are the most widely used distance measures. However, these two measures assign too much weight either to rare lineages or to most abundant lineages, which can lead to loss of power when the important composition change occurs in moderately abundant lineages. Results: We develop generalized UniFrac distances that extend the weighted and unweighted UniFrac distances for detecting a much wider range of biologically relevant changes. We evaluate the use of generalized UniFrac distances in associating microbiome composition with environmental covariates using extensive Monte Carlo simulations. Our results show that tests using the unweighted and weighted UniFrac distances are less powerful in detecting abundance change in moderately abundant lineages. In contrast, the generalized UniFrac distance is most powerful in detecting such changes, yet it retains nearly all its power for detecting rare and highly abundant lineages. The generalized UniFrac distance also has an overall better power than the joint use of unweighted/weighted UniFrac distances. Application to two real microbiome datasets has demonstrated gains in power in testing the associations between human microbiome and diet intakes and habitual smoking. Availability: http://cran.r-project.org/web/packages/GUniFrac Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


PLOS ONE | 2010

Disordered microbial communities in the upper respiratory tract of cigarette smokers.

Emily S. Charlson; Jun Chen; Rebecca Custers-Allen; Kyle Bittinger; Hongzhe Li; Rohini Sinha; Jennifer Hwang; Frederic D. Bushman; Ronald G. Collman

Cigarette smokers have an increased risk of infectious diseases involving the respiratory tract. Some effects of smoking on specific respiratory tract bacteria have been described, but the consequences for global airway microbial community composition have not been determined. Here, we used culture-independent high-density sequencing to analyze the microbiota from the right and left nasopharynx and oropharynx of 29 smoking and 33 nonsmoking healthy asymptomatic adults to assess microbial composition and effects of cigarette smoking. Bacterial communities were profiled using 454 pyrosequencing of 16S sequence tags (803,391 total reads), aligned to 16S rRNA databases, and communities compared using the UniFrac distance metric. A Random Forest machine-learning algorithm was used to predict smoking status and identify taxa that best distinguished between smokers and nonsmokers. Community composition was primarily determined by airway site, with individuals exhibiting minimal side-of-body or temporal variation. Within airway habitats, microbiota from smokers were significantly more diverse than nonsmokers and clustered separately. The distributions of several genera were systematically altered by smoking in both the oro- and nasopharynx, and there was an enrichment of anaerobic lineages associated with periodontal disease in the oropharynx. These results indicate that distinct regions of the human upper respiratory tract contain characteristic microbial communities that exhibit disordered patterns in cigarette smokers, both in individual components and global structure, which may contribute to the prevalence of respiratory tract complications in this population.


Nature Medicine | 2011

Low levels of SIV infection in sooty mangabey central memory CD4 + T cells are associated with limited CCR5 expression

Mirko Paiardini; Barbara Cervasi; Elane Reyes-Aviles; Luca Micci; Alexandra M. Ortiz; Ann Chahroudi; Carol L. Vinton; Shari N. Gordon; Steven E. Bosinger; Nicholas Francella; Paul L Hallberg; Elizabeth M. Cramer; Timothy E. Schlub; Ming Liang Chan; Nadeene E. Riddick; Ronald G. Collman; Cristian Apetrei; Ivona Pandrea; James G. Else; Jan Münch; Frank Kirchhoff; Miles P. Davenport; Jason M. Brenchley; Guido Silvestri

Naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4+CCR5+ T cells is lower in sooty mangabeys compared to humans and macaques. Here we found that, after in vitro stimulation, sooty mangabey CD4+ T cells fail to upregulate CCR5 and that this phenomenon is more pronounced in CD4+ central memory T cells (TCM cells). CD4+ T cell activation was similarly uncoupled from CCR5 expression in sooty mangabeys in vivo during acute SIV infection and the homeostatic proliferation that follows antibody-mediated CD4+ T cell depletion. Sooty mangabey CD4+ TCM cells that express low amounts of CCR5 showed reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4+ TCM cells of rhesus macaques. These data suggest that low CCR5 expression on sooty mangabey CD4+ T cells favors the preservation of CD4+ T cell homeostasis and promotes an AIDS-free status by protecting CD4+ TCM cells from direct virus infection.

Collaboration


Dive into the Ronald G. Collman's collaboration.

Top Co-Authors

Avatar

Yanjie Yi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis L. Kolson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Guido Silvestri

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Kyle Bittinger

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Robert W. Doms

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anjali Singh

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Brian Tomkowicz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Emily S. Charlson

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge