Ronald W. Raab
James Madison University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ronald W. Raab.
Journal of Cell Biology | 2006
Jiahu Wang; Ningning Wang; Jinling Xie; Staci C. Walton; Robert L. McKown; Ronald W. Raab; Peisong Ma; Shannon L. Beck; George L. Coffman; Isa M. Hussaini; Gordon W. Laurie
Renewal of nongermative epithelia is poorly understood. The novel mitogen “lacritin” is apically secreted by several nongermative epithelia. We tested 17 different cell types and discovered that lacritin is preferentially mitogenic or prosecretory for those types that normally contact lacritin during its glandular outward flow. Mitogenesis is dependent on lacritins C-terminal domain, which can form an α-helix with a hydrophobic face, as per VEGFs and PTHLPs respective dimerization or receptor-binding domain. Lacritin targets downstream NFATC1 and mTOR. The use of inhibitors or siRNA suggests that lacritin mitogenic signaling involves Gαi or Gαo–PKCα-PLC–Ca2+–calcineurin–NFATC1 and Gαi or Gαo–PKCα-PLC–phospholipase D (PLD)–mTOR in a bell-shaped, dose-dependent manner requiring the Ca2+ sensor STIM1, but not TRPC1. This pathway suggests the placement of transiently dephosphorylated and perinuclear Golgi–translocated PKCα upstream of both Ca2+ mobilization and PLD activation in a complex with PLCγ2. Outward flow of lacritin from secretory cells through ducts may generate a proliferative/secretory field as a different unit of cellular renewal in nongermative epithelia where luminal structures predominate.
Journal of Cell Biology | 2006
Peisong Ma; Shannon L. Beck; Ronald W. Raab; Robert L. McKown; George L. Coffman; Atsushi Utani; William J. Chirico; Alan C. Rapraeger; Gordon W. Laurie
Cell surface heparan sulfate (HS) proteoglycans are carbohydrate-rich regulators of cell migratory, mitogenic, secretory, and inflammatory activity that bind and present soluble heparin-binding growth factors (e.g., fibroblast growth factor, Wnt, Hh, transforming growth factor β, amphiregulin, and hepatocyte growth factor) to their respective signaling receptors. We demonstrate that the deglycanated core protein of syndecan-1 (SDC1) and not HS chains nor SDC2 or -4, appears to target the epithelial selective prosecretory mitogen lacritin. An important and novel step in this mechanism is that binding necessitates prior partial or complete removal of HS chains by endogenous heparanase. This limits lacritin activity to sites where heparanase appears to predominate, such as sites of exocrine cell migration, secretion, renewal, and inflammation. Binding is mutually specified by lacritins C-terminal mitogenic domain and SDC1s N terminus. Heparanase modification of the latter transforms a widely expressed HS proteoglycan into a highly selective surface-binding protein. This novel example of cell specification through extracellular modification of an HS proteoglycan has broad implications in development, homeostasis, and disease.
Journal of Bacteriology | 2012
Michelle M. Giffin; Lucia Modesti; Ronald W. Raab; Lawrence G. Wayne; Charles D. Sohaskey
The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown.
Journal of Biological Chemistry | 2013
Ningning Wang; Keith Zimmerman; Ronald W. Raab; Robert L. McKown; Cindy M. L. Hutnik; Venu Talla; Milton F. Tyler; Jae K. Lee; Gordon W. Laurie
Background: Homeostatic regulation of epithelia influences disease acquisition and aging. Results: Prosecretory mitogen lacritin stimulates FOXO3-ATG101 and FOXO1-ATG7 autophagic coupling and restores metabolic homeostasis. Conclusion: Lacritin is a homeostatic regulator. Significance: Exogenous lacritin restores prohomeostatic activity to tears from dry eye individuals. Homeostasis is essential for cell survival. However, homeostatic regulation of surface epithelia is poorly understood. The eye surface, lacking the cornified barrier of skin, provides an excellent model. Tears cover the surface of the eye and are deficient in dry eye, the most common eye disease affecting at least 5% of the worlds population. Only a tiny fraction of the tear proteome appears to be affected, including lacritin, an epithelium-selective mitogen that promotes basal tearing when topically applied to rabbit eyes. Here we show that homeostasis of cultured corneal epithelia is entirely lacritin-dependent and elucidate the mechanism as a rapid autophagic flux to promptly restore cellular metabolism and mitochondrial fusion in keeping with the short residence time of lacritin on the eye. Accelerated flux appears to be derived from lacritin-stimulated acetylation of FOXO3 as a novel ligand for ATG101 and coupling of stress-acetylated FOXO1 with ATG7 (which remains uncoupled without lacritin) and be sufficient to selectively divert huntingtin mutant Htt103Q aggregates largely without affecting non-aggregated Htt25Q. This is in keeping with stress as a prerequisite for lacritin-stimulated autophagy. Lacritin targets the cell surface proteoglycan syndecan-1 via its C-terminal amino acids Leu108-Leu109-Phe112 and is also available in saliva, plasma, and lung lavage. Thus, lacritin may promote epithelial homeostasis widely.
Journal of Biological Chemistry | 2013
Yinghui Zhang; Ningning Wang; Ronald W. Raab; Robert L. McKown; Jacob A. Irwin; Inchan Kwon; Toin H. van Kuppevelt; Gordon W. Laurie
Background: The C terminus of prosecretory mitogen lacritin targets the first 50 amino acids of syndecan-1 in a heparanase-dependent manner. Results: The amphipathic α-helix of lacritin ligates the sequence Gly-Ala-Gly-Ala-Leu and N-terminal chondroitin and heparan sulfate chains of SDC1. Conclusion: Ligation requires all three binding elements. Significance: This hybrid binding domain helps explain the remarkable cell selectivity of lacritin and may have relevance in dry eye. Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097–1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the α-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-β-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease.
Investigative Ophthalmology & Visual Science | 2013
Francisco Velez; Jeffrey Romano; Robert L. McKown; Kari B. Green; Liwen Zhang; Ronald W. Raab; Denise S. Ryan; Cindy M. L. Hutnik; Henry F. Frierson; Gordon W. Laurie
PURPOSE Molar accounting of bioactive fluids can expose new regulatory mechanisms in the growing proteomic focus on epithelial biology. Essential for the viability of the surface epithelium of the eye and for normal vision is the thin, but protein-rich, tear film in which the small tear glycoprotein lacritin appears to play a prominent prosecretory, cytoprotective, and mitogenic role. Although optimal bioactive levels in cell culture are 1 to 10 nM over a biphasic dose optimum, ELISA suggests a sustained tear lacritin concentration in the midmicromolar range in healthy adults. Here we identify a reconciling mechanism. METHODS Monoclonal anti-lacritin 1F5 antibody was generated, and applied together with a new anti-C-terminal polyclonal antibody to tear and tissue Western blotting. In vitro tissue transglutaminase (Tgm2) cross-linking was monitored and characterized by mass spectrometry. RESULTS Blotting for lacritin in human tears or saliva surprisingly detected immunoreactive material with a higher molecular weight and prominence equal or exceeding the ∼23 to 25 kDa band of monomeric glycosylated lacritin. Exogenous Tgm2 initiated lacritin cross-linking within 1 minute and was complete by 90 minutes-even with as little as 0.1 nM lacritin, and involved the donors lysine 82 and 85 and the acceptor glutamine 106 in the syndecan-1 binding domain. Lacritin spiked into lacritin-depleted tears formed multimers, in keeping with ∼0.6 μM TGM2 in tears. Cross-linking was absent when Tgm2 was inactive, and cross-linked lacritin, unlike recombinant monomer, bound syndecan-1 poorly. CONCLUSIONS Since syndecan-1 binding is necessary for lacritin mitogenic and cytoprotective activities, TGM2 cross-linking negatively regulates lacritin bioactivity.
Journal of Biological Chemistry | 2014
Robert L. McKown; Erin V. Coleman Frazier; Kaneil K. Zadrozny; Andrea M. Deleault; Ronald W. Raab; Denise S. Ryan; Rose K. Sia; Jae K. Lee; Gordon W. Laurie
Background: The wet visual surface of the eye is essentially a sterile environment. Results: Proteolytic processing of the prosecretory mitogen lacritin in tears releases a fragment that is required for much of the bactericidal activity of tears. Conclusion: The protease-released C terminus of lacritin is bactericidal under physiological conditions. Significance: All known lacritin activities are bundled within the same C-terminal region, although at different dose optimum. Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1–10 nm dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells.
PLOS ONE | 2012
Michelle M. Giffin; Ronald W. Raab; Melissa Morganstern; Charles Sohaskey
Mycobacterium tuberculosis induces nitrate reductase activity in response to decreasing oxygen levels. This is due to regulation of both the transcription and the activity of the nitrate transporter NarK2. A model of NarK2 structure is proposed containing 12 membrane spanning regions consistent with other members of the major facilitator superfamily. The role of the proton gradient was determined by exposing M. tuberculosis to uncouplers. Nitrite production decreased indicating that the importation of nitrate involved an H+/nitrate symporter. The addition of nitrite before nitrate had no effect, suggesting no role for a nitrate/nitrite antiporter. In addition the NarK2 knockout mutant showed no defect in nitrite export. NarK2 is proposed to be a Type I H+/nitrate symporter. Site directed mutagenesis was performed changing 23 amino acids of NarK2. This allowed the identification of important regions and amino acids of this transporter. Five of these mutants were inactive for nitrate transport, seven produced reduced activity and eleven mutants retained wild type activity. NarK2 is inactivated in the presence of oxygen by an unknown mechanism. However none of the mutants, including those with mutated cysteines, were altered in their response to oxygen levels. The assimilatory nitrate transporter NasA of Bacillus subtilis was expressed in the M. tuberculosis NarK2 mutant. It remained active during aerobic incubation showing that the point of oxygen control is NarK2.
Protein Expression and Purification | 2011
Jeremy L. Goodin; Bradford S. Powell; Jeff T. Enama; Ronald W. Raab; Robert L. McKown; George L. Coffman; Gerard P. Andrews
We previously developed a unique recombinant protein vaccine against plague composed of a fusion between the Fraction 1 capsular antigen (F1) and the V antigen. To determine if overall expression, solubility, and recovery of the F1-V fusion protein could be enhanced, we modified the original fusion. Standard recombinant DNA techniques were used to reverse the gene order such that the V antigen coding sequence was fused at its C-terminus to the N-terminus of F1. The F1 secretion signal sequence (F1S) was subsequently fused to the N-terminus of V. This new fusion protein, designated F1S-V-F1, was then co-expressed with the Y. pestis Caf1M periplasmic chaperone protein in BL21-Star Escherichia coli. Recombinant strains expressing F1-V, F1S-F1-V, or F1S-V-F1 were compared by cell fractionation, SDS-PAGE, Western blotting, and suspension immunolabelling. F1S-V-F1 exhibited enhanced solubility and secretion when co-expressed with Caf1M resulting in a recombinant protein that is processed in a similar manner to the native F1 protein. Purification of F1S-V-F1 was accomplished by anion-exchange and hydrophobic interaction chromatography. The purification method produced greater than 1mg of purified soluble protein per liter of induced culture. F1S-V-F1 polymerization characteristics were comparable to the native F1. The purified F1S-V-F1 protein appeared equivalent to F1-V in its ability to be recognized by neutralizing antibodies.
PLOS ONE | 2016
Ronald W. Raab; Julia E. Moore; Edward L. Vargo; Lucy Rose; Julie Raab; Madeline Culbreth; Gracie Burzumato; Aurvan Koyee; Brittany McCarthy; Jennifer Raffaele; Coby Schal; Rajeev Vaidyanathan
Infestations of the common bed bug (Cimex lectularius L.) have increased substantially in the United States in the past 10–15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4–6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a) 16/21 (73%) infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b) up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr), from valine to leucine (V419L) and leucine to isoleucine (L925I) that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40%) bed bugs were homozygous for both kdr mutations (L419/I925), and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug infestations in multistory apartment buildings.