Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronny Kirste is active.

Publication


Featured researches published by Ronny Kirste.


Applied Physics Letters | 2012

On the origin of the 265 nm absorption band in AlN bulk crystals

Ramon Collazo; Jinqiao Xie; Benjamin E. Gaddy; Zachary Bryan; Ronny Kirste; Marc P. Hoffmann; Rafael Dalmau; Baxter Moody; Yoshinao Kumagai; Toru Nagashima; Yuki Kubota; Toru Kinoshita; Akinori Koukitu; Douglas L. Irving; Zlatko Sitar

Single crystal AlN provides a native substrate for Al-rich AlGaN that is needed for the development of efficient deep ultraviolet light emitting and laser diodes. An absorption band centered around 4.7 eV (∼265 nm) with an absorption coefficient above 1000 cm−1 is observed in these substrates. Based on density functional theory calculations, substitutional carbon on the nitrogen site introduces absorption at this energy. A series of single crystalline wafers were used to demonstrate that this absorption band linearly increased with carbon, strongly supporting the model that CN- is the predominant state for carbon in AlN.


Applied Physics Letters | 2013

Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures

Jinqiao Xie; Seiji Mita; Zachary Bryan; Wei Guo; Lindsay Hussey; Baxter Moody; Raoul Schlesser; Ronny Kirste; Michael Gerhold; Ram on Collazo; Zlatko Sitar

To unambiguously distinguish lasing from super luminescence, key elements of lasing such as longitudinal cavity modes with narrow line-width, polarized emission, and elliptically shaped far-field pattern, need to be demonstrated at the same time. Here, we show transverse electric polarized lasing at 280.8 nm and 263.9 nm for AlGaN based multi-quantum-wells and double heterojunction structures fabricated on single crystalline AlN substrates. An elliptically shaped far-field pattern was recorded when pumped above threshold. With cavities shorter than 200 μm, well-defined, equally spaced longitudinal modes with line widths as narrow as 0.014 nm were observed. The low threshold pumping density of 84 kW/cm2 suggests that the electrically pumped sub-300 nm ultraviolet laser diodes are imminent.


Journal of Applied Physics | 2010

Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals

C. Rauch; W. Gehlhoff; M. R. Wagner; Enno Malguth; Gordon Callsen; Ronny Kirste; B. Salameh; A. Hoffmann; Sebastian Polarz; Y. Aksu; Matthias Driess

We study the existence of Li-related shallow and deep acceptor levels in Li-doped ZnO nanocrystals using electron paramagnetic resonance (EPR) and photoluminescence (PL) spectroscopy. ZnO nanocrystals with adjustable Li concentrations between 0% and 12% have been prepared using organometallic precursors and show a significant lowering of the Fermi energy upon doping. The deep Li acceptor with an acceptor energy of 800 meV could be identified in both EPR and PL measurements and is responsible for the yellow luminescence at 2.2 eV. Additionally, a shallow acceptor state at 150 meV above the valence band maximum is made responsible for the observed donor-acceptor pair and free electron-acceptor transitions at 3.235 and 3.301 eV, possibly stemming from the formation of Li-related defect complexes acting as acceptors.


Applied Physics Letters | 2013

Vacancy compensation and related donor-acceptor pair recombination in bulk AlN

Benjamin E. Gaddy; Zachary Bryan; Isaac Bryan; Ronny Kirste; Jinqiao Xie; Rafael Dalmau; Baxter Moody; Yoshinao Kumagai; Toru Nagashima; Yuki Kubota; Toru Kinoshita; Akinori Koukitu; Zlatko Sitar; Ramon Collazo; Douglas L. Irving

A prominent 2.8 eV emission peak is identified in bulk AlN substrates grown by physical vapor transport. This peak is shown to be related to the carbon concentration in the samples. Density functional theory calculations predict that this emission is caused by a donor-acceptor pair (DAP) recombination between substitutional carbon on the nitrogen site and a nitrogen vacancy. Photoluminescence and photoluminescence-excitation spectroscopy are used to confirm the model and indicate the DAP character of the emission. The interaction between defects provides a pathway to creating ultraviolet-transparent AlN substrates for optoelectronics applications.


Applied Physics Letters | 2011

Phonon deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent Raman measurements

G. Callsen; J. S. Reparaz; M. R. Wagner; Ronny Kirste; C. Nenstiel; A. Hoffmann; M. R. Phillips

We report the phonon deformation potentials of wurtzite GaN and ZnO for all zone center optical phonon modes determined by Raman measurements as a function of uniaxial pressure. Despite all the structural and optical similarities between these two material systems, the pressure dependency of their vibrational spectra exhibits fundamental distinctions, which is attributed to their different bond ionicities. In addition, the LO-TO splitting of the A1 and E1 phonon modes is analyzed which yields insight into the uniaxial pressure dependency of Born’s transverse effective charge eT∗.


Applied Physics Letters | 2013

Polarity control and growth of lateral polarity structures in AlN

Ronny Kirste; Seiji Mita; Lindsay Hussey; Marc P. Hoffmann; Wei Guo; Isaac Bryan; Zachary Bryan; James Tweedie; Jinqiao Xie; Michael Gerhold; Ram on Collazo; Zlatko Sitar

The control of the polarity of metalorganic chemical vapor deposition grown AlN on sapphire is demonstrated. Al-polar and N-polar AlN is grown side-by-side yielding a lateral polarity structure. Scanning electron microscopy measurements reveal a smooth surface for the Al-polar and a relatively rough surface for the N-polar AlN domains. Transmission electron microscopy shows mixed edge-screw type dislocations with polarity-dependent dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge luminescence consists of free and bound excitons which are broadened for the Al-polar AlN. Relaxation, better optical quality, and dislocation bending in the N-polar domains are explained by the columnar growth mode.


Journal of Applied Physics | 2014

Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

Wei Guo; Zachary Bryan; Jinqiao Xie; Ronny Kirste; Seiji Mita; Isaac Bryan; Lindsay Hussey; Milena Bobea; Brian B. Haidet; Michael Gerhold; Ramon Collazo; Zlatko Sitar

Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm2 were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm−1 when pumped at 1 MW/cm2. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.


Journal of Applied Physics | 2011

Temperature dependent photoluminescence of lateral polarity junctions of metal organic chemical vapor deposition grown GaN

Ronny Kirste; Ramon Collazo; Gordon Callsen; M. R. Wagner; Thomas Kure; J. S. Reparaz; Seji Mita; Jinqiao Xie; Anthony Rice; James Tweedie; Zlatko Sitar; A. Hoffmann

We report on fundamental structural and optical properties of lateral polarity junctions in GaN. GaN with Ga- to N-polar junctions was grown on sapphire using an AlN buffer layer. Results from scanning electron microscopy and Raman spectroscopy measurements indicate a superior quality of the Ga-polar GaN. An extremely strong luminescence signal is observed at the inversion domain boundary (IDB). Temperature dependent micro photoluminescence measurements are used to reveal the recombination processes underlying this strong emission. At 5 K the emission mainly arises from a stripe along the inversion domain boundary with a thickness of 4-5 μm. An increase of the temperature initially leads to a narrowing to below 2 μm emission area width followed by a broadening at temperatures above 70 K. The relatively broad emission area at low temperatures is explained by a diagonal IDB. It is shown that all further changes in the emission area width are related to thermalization effects of carriers and defects attracte...


Applied Physics Letters | 2013

Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition

Isaac Bryan; Anthony Rice; Lindsay Hussey; Zachary Bryan; Milena Bobea; Seiji Mita; Jinqiao Xie; Ronny Kirste; Ramon Collazo; Zlatko Sitar

Strain relaxation mechanisms were investigated in epitaxial AlN layers deposited on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. It was revealed that epitaxial AlN layers under tensile strain can exhibit micro-cracks and nano-pits. A correlation existed between the amount of strain and number of pits in localized areas. Pit densities as high as 1010 cm−2 were observed in areas where the tensile strain reached ∼0.4%, while unstrained areas of the film showed step flow growth. These nano-pits occurred as a strain relaxation mechanism and were not related to intrinsic defects, such as threading dislocations or inversion domains.


Journal of Applied Physics | 2013

Compensation effects in GaN:Mg probed by Raman spectroscopy and photoluminescence measurements

Ronny Kirste; Marc P. Hoffmann; James Tweedie; Zachary Bryan; Gordon Callsen; Thomas Kure; Christian Nenstiel; M. R. Wagner; Ram on Collazo; A. Hoffmann; Zlatko Sitar

Compensation effects in metal organic chemical vapour deposition grown GaN doped with magnesium are investigated with Raman spectroscopy and photoluminescence measurements. Examining the strain sensitive E2(high) mode, an increasing compressive strain is revealed for samples with Mg-concentrations lower than 7 × 1018 cm−3. For higher Mg-concentrations, this strain is monotonically reduced. This relaxation is accompanied by a sudden decrease in crystal quality. Luminescence measurements reveal a well defined near band edge luminescence with free, donor bound, and acceptor bound excitons as well as a characteristic donor acceptor pair (DAP) luminescence. Following recent results, three acceptor bound excitons and donor acceptor pairs are identified. Along with the change of the strain, a strong modification in the luminescence of the dominating acceptor bound exciton and DAP luminescence is observed. The results from Raman spectroscopy and luminescence measurements are interpreted as fingerprints of compensation effects in GaN:Mg leading to the conclusion that compensation due to defect incorporation triggered by Mg-doping already affects the crystal properties at doping levels of around 7 × 1018 cm−3. Thereby, the generation of nitrogen vacancies is introduced as the driving force for the change of the strain state and the near band edge luminescence.Compensation effects in metal organic chemical vapour deposition grown GaN doped with magnesium are investigated with Raman spectroscopy and photoluminescence measurements. Examining the strain sensitive E2(high) mode, an increasing compressive strain is revealed for samples with Mg-concentrations lower than 7 × 1018 cm−3. For higher Mg-concentrations, this strain is monotonically reduced. This relaxation is accompanied by a sudden decrease in crystal quality. Luminescence measurements reveal a well defined near band edge luminescence with free, donor bound, and acceptor bound excitons as well as a characteristic donor acceptor pair (DAP) luminescence. Following recent results, three acceptor bound excitons and donor acceptor pairs are identified. Along with the change of the strain, a strong modification in the luminescence of the dominating acceptor bound exciton and DAP luminescence is observed. The results from Raman spectroscopy and luminescence measurements are interpreted as fingerprints of compens...

Collaboration


Dive into the Ronny Kirste's collaboration.

Top Co-Authors

Avatar

Ramon Collazo

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Zlatko Sitar

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Seiji Mita

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Isaac Bryan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Zachary Bryan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

A. Hoffmann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

James Tweedie

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Pramod Reddy

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Marc P. Hoffmann

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M. R. Wagner

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge