Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zachary Bryan is active.

Publication


Featured researches published by Zachary Bryan.


Applied Physics Letters | 2012

On the origin of the 265 nm absorption band in AlN bulk crystals

Ramon Collazo; Jinqiao Xie; Benjamin E. Gaddy; Zachary Bryan; Ronny Kirste; Marc P. Hoffmann; Rafael Dalmau; Baxter Moody; Yoshinao Kumagai; Toru Nagashima; Yuki Kubota; Toru Kinoshita; Akinori Koukitu; Douglas L. Irving; Zlatko Sitar

Single crystal AlN provides a native substrate for Al-rich AlGaN that is needed for the development of efficient deep ultraviolet light emitting and laser diodes. An absorption band centered around 4.7 eV (∼265 nm) with an absorption coefficient above 1000 cm−1 is observed in these substrates. Based on density functional theory calculations, substitutional carbon on the nitrogen site introduces absorption at this energy. A series of single crystalline wafers were used to demonstrate that this absorption band linearly increased with carbon, strongly supporting the model that CN- is the predominant state for carbon in AlN.


Applied Physics Letters | 2013

Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures

Jinqiao Xie; Seiji Mita; Zachary Bryan; Wei Guo; Lindsay Hussey; Baxter Moody; Raoul Schlesser; Ronny Kirste; Michael Gerhold; Ram on Collazo; Zlatko Sitar

To unambiguously distinguish lasing from super luminescence, key elements of lasing such as longitudinal cavity modes with narrow line-width, polarized emission, and elliptically shaped far-field pattern, need to be demonstrated at the same time. Here, we show transverse electric polarized lasing at 280.8 nm and 263.9 nm for AlGaN based multi-quantum-wells and double heterojunction structures fabricated on single crystalline AlN substrates. An elliptically shaped far-field pattern was recorded when pumped above threshold. With cavities shorter than 200 μm, well-defined, equally spaced longitudinal modes with line widths as narrow as 0.014 nm were observed. The low threshold pumping density of 84 kW/cm2 suggests that the electrically pumped sub-300 nm ultraviolet laser diodes are imminent.


Applied Physics Letters | 2013

Vacancy compensation and related donor-acceptor pair recombination in bulk AlN

Benjamin E. Gaddy; Zachary Bryan; Isaac Bryan; Ronny Kirste; Jinqiao Xie; Rafael Dalmau; Baxter Moody; Yoshinao Kumagai; Toru Nagashima; Yuki Kubota; Toru Kinoshita; Akinori Koukitu; Zlatko Sitar; Ramon Collazo; Douglas L. Irving

A prominent 2.8 eV emission peak is identified in bulk AlN substrates grown by physical vapor transport. This peak is shown to be related to the carbon concentration in the samples. Density functional theory calculations predict that this emission is caused by a donor-acceptor pair (DAP) recombination between substitutional carbon on the nitrogen site and a nitrogen vacancy. Photoluminescence and photoluminescence-excitation spectroscopy are used to confirm the model and indicate the DAP character of the emission. The interaction between defects provides a pathway to creating ultraviolet-transparent AlN substrates for optoelectronics applications.


Applied Physics Letters | 2013

Polarity control and growth of lateral polarity structures in AlN

Ronny Kirste; Seiji Mita; Lindsay Hussey; Marc P. Hoffmann; Wei Guo; Isaac Bryan; Zachary Bryan; James Tweedie; Jinqiao Xie; Michael Gerhold; Ram on Collazo; Zlatko Sitar

The control of the polarity of metalorganic chemical vapor deposition grown AlN on sapphire is demonstrated. Al-polar and N-polar AlN is grown side-by-side yielding a lateral polarity structure. Scanning electron microscopy measurements reveal a smooth surface for the Al-polar and a relatively rough surface for the N-polar AlN domains. Transmission electron microscopy shows mixed edge-screw type dislocations with polarity-dependent dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge luminescence consists of free and bound excitons which are broadened for the Al-polar AlN. Relaxation, better optical quality, and dislocation bending in the N-polar domains are explained by the columnar growth mode.


Applied Physics Express | 2013

Preparation of Free-Standing GaN Substrates from Thick GaN Layers Crystallized by Hydride Vapor Phase Epitaxy on Ammonothermally Grown GaN Seeds

T. Sochacki; Zachary Bryan; M. Amilusik; Ramon Collazo; B. Lucznik; J.L. Weyher; G. Nowak; Bogdan Sadovyi; G. Kamler; Robert Kucharski; Marcin Zajac; Roman Doradzinski; Robert Dwilinski; I. Grzegory; Michal Bockowski; Zlatko Sitar

Crystallization of GaN by hydride vapor phase epitaxy (HVPE) on ammonothermally grown GaN seed crystals is described. The initial growth conditions for HVPE are determined and applied for further bulk growth. Smooth GaN layers up to 1.1 mm thick and of excellent crystalline quality, without cracks, and with low dislocation density are obtained. Preparation of the free-standing HVPE-GaN crystal by slicing and structural and optical quality of the resulting wafer are presented.


Journal of Applied Physics | 2014

The effect of polarity and surface states on the Fermi level at III-nitride surfaces

Pramod Reddy; Isaac Bryan; Zachary Bryan; Wei Guo; Lindsay Hussey; Ramon Collazo; Zlatko Sitar

Surface states and their influence on the Fermi level at the surface of GaN and AlN are studied using x-ray photoelectron spectroscopy (XPS). The effect of polarity on surface electronic properties was studied. Accurate modeling of the valence band edge and comparison with XPS data revealed the presence of donor surface states at 1.4 eV and acceptor states at energies >2.7 eV from the valence band in GaN. Al polar AlN showed acceptor states at energies >3.3 eV. Density of acceptor surface states was estimated to be between 1013 and 1014 eV−1 cm−2 in both GaN and AlN. The shift in charge neutrality levels and barrier heights due to polarity and the density of surface states on AlN and GaN were estimated from XPS measurements. Theoretical modeling and comparison with XPS data implied full compensation of spontaneous polarization charge by charged surface states. Barrier height measurements also reveal a dependence on polarity with ϕmetal-polar >  ϕnon-polar >  ϕnitrogen-polar suggesting that the N-polar sur...


Applied Physics Letters | 2015

High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

Zachary Bryan; Isaac Bryan; Jinqiao Xie; Seiji Mita; Zlatko Sitar; Ramon Collazo

The internal quantum efficiency (IQE) of Al0.55Ga0.45N/AlN and Al0.55Ga0.45N/Al0.85Ga0.15N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 1018 cm−3 was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.


Journal of Applied Physics | 2014

Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

Wei Guo; Zachary Bryan; Jinqiao Xie; Ronny Kirste; Seiji Mita; Isaac Bryan; Lindsay Hussey; Milena Bobea; Brian B. Haidet; Michael Gerhold; Ramon Collazo; Zlatko Sitar

Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm2 were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm−1 when pumped at 1 MW/cm2. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.


Applied Physics Letters | 2013

Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition

Isaac Bryan; Anthony Rice; Lindsay Hussey; Zachary Bryan; Milena Bobea; Seiji Mita; Jinqiao Xie; Ronny Kirste; Ramon Collazo; Zlatko Sitar

Strain relaxation mechanisms were investigated in epitaxial AlN layers deposited on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. It was revealed that epitaxial AlN layers under tensile strain can exhibit micro-cracks and nano-pits. A correlation existed between the amount of strain and number of pits in localized areas. Pit densities as high as 1010 cm−2 were observed in areas where the tensile strain reached ∼0.4%, while unstrained areas of the film showed step flow growth. These nano-pits occurred as a strain relaxation mechanism and were not related to intrinsic defects, such as threading dislocations or inversion domains.


Journal of Applied Physics | 2013

Compensation effects in GaN:Mg probed by Raman spectroscopy and photoluminescence measurements

Ronny Kirste; Marc P. Hoffmann; James Tweedie; Zachary Bryan; Gordon Callsen; Thomas Kure; Christian Nenstiel; M. R. Wagner; Ram on Collazo; A. Hoffmann; Zlatko Sitar

Compensation effects in metal organic chemical vapour deposition grown GaN doped with magnesium are investigated with Raman spectroscopy and photoluminescence measurements. Examining the strain sensitive E2(high) mode, an increasing compressive strain is revealed for samples with Mg-concentrations lower than 7 × 1018 cm−3. For higher Mg-concentrations, this strain is monotonically reduced. This relaxation is accompanied by a sudden decrease in crystal quality. Luminescence measurements reveal a well defined near band edge luminescence with free, donor bound, and acceptor bound excitons as well as a characteristic donor acceptor pair (DAP) luminescence. Following recent results, three acceptor bound excitons and donor acceptor pairs are identified. Along with the change of the strain, a strong modification in the luminescence of the dominating acceptor bound exciton and DAP luminescence is observed. The results from Raman spectroscopy and luminescence measurements are interpreted as fingerprints of compensation effects in GaN:Mg leading to the conclusion that compensation due to defect incorporation triggered by Mg-doping already affects the crystal properties at doping levels of around 7 × 1018 cm−3. Thereby, the generation of nitrogen vacancies is introduced as the driving force for the change of the strain state and the near band edge luminescence.Compensation effects in metal organic chemical vapour deposition grown GaN doped with magnesium are investigated with Raman spectroscopy and photoluminescence measurements. Examining the strain sensitive E2(high) mode, an increasing compressive strain is revealed for samples with Mg-concentrations lower than 7 × 1018 cm−3. For higher Mg-concentrations, this strain is monotonically reduced. This relaxation is accompanied by a sudden decrease in crystal quality. Luminescence measurements reveal a well defined near band edge luminescence with free, donor bound, and acceptor bound excitons as well as a characteristic donor acceptor pair (DAP) luminescence. Following recent results, three acceptor bound excitons and donor acceptor pairs are identified. Along with the change of the strain, a strong modification in the luminescence of the dominating acceptor bound exciton and DAP luminescence is observed. The results from Raman spectroscopy and luminescence measurements are interpreted as fingerprints of compens...

Collaboration


Dive into the Zachary Bryan's collaboration.

Top Co-Authors

Avatar

Ramon Collazo

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Zlatko Sitar

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Isaac Bryan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ronny Kirste

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

James Tweedie

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Seiji Mita

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Lindsay Hussey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Milena Bobea

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Marc P. Hoffmann

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Pramod Reddy

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge