Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa Prazeres Melo Furriel is active.

Publication


Featured researches published by Rosa Prazeres Melo Furriel.


Comparative Biochemistry and Physiology B | 2000

Characterization of (Na+, K+)-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii

Rosa Prazeres Melo Furriel; John C. McNamara; Francisco A. Leone

To better understand the adaptive strategies that led to freshwater invasion by hyper-regulating Crustacea, we prepared a microsomal (Na+, K+)-ATPase by differential centrifugation of a gill homogenate from the freshwater shrimp Macrobrachium olfersii. Sucrose gradient centrifugation revealed a light fraction containing most of the (Na+, K+)-ATPase activity, contaminated with other ATPases, and a heavy fraction containing negligible (Na+, K+)-ATPase activity. Western blotting showed that M. olfersii gill contains a single alpha-subunit isoform of about 110 kDa. The (Na+, K+)-ATPase hydrolyzed ATP with Michaelis Menten kinetics with K5, = 165+/-5 microM and Vmax = 686.1+/-24.7 U mg(-1). Stimulation by potassium (K0.5 = 2.4+/-0.1 mM) and magnesium ions (K0.5 = 0.76+/-0.03 mM) also obeyed Michaelis-Menten kinetics, while that by sodium ions (K0.5 = 6.0+/-0.2 mM) exhibited site site interactions (n = 1.6). Ouabain (K0.5 = 61.6+/-2.8 microM) and vanadate (K0.5 = 3.2+/-0.1 microM) inhibited up to 70% of the total ATPase activity, while thapsigargin and ethacrynic acid did not affect activity. The remaining 30% activity was inhibited by oligomycin, sodium azide and bafilomycin A. These data suggest that the (Na+, K+)-ATPase corresponds to about 70% of the total ATPase activity; the remaining 30%, i.e. the ouabain-insensitive ATPase activity, apparently correspond to F0F1- and V-ATPases, but not Ca-stimulated and Na- or K-stimulated ATPases. The data confirm the recent invasion of the freshwater biotope by M. olfersii and suggest that (Na+, K+)-ATPase activity may be regulated by the Na+ concentration of the external medium.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2002

Modulation by ammonium ions of gill microsomal (Na+,K+)-ATPase in the swimming crab Callinectes danae: a possible mechanism for regulation of ammonia excretion.

D.C. Masui; Rosa Prazeres Melo Furriel; John C. McNamara; Fernando L. Mantelatto; Francisco A. Leone

The modulation by Na(+), K(+), NH(4)(+) and ATP of the (Na(+),K(+))-ATPase in a microsomal fraction from Callinectes danae gills was analyzed. ATP was hydrolyzed at high-affinity binding sites at a maximal rate of V=35.4+/-2.1 Umg(-1) and K(0.5)=54.0+/-3.6 nM, obeying cooperative kinetics (n(H)=3.6). At low-affinity sites, the enzyme hydrolyzed ATP obeying Michaelis-Menten kinetics with K(M)=55.0+/-3.0 microM and V=271.5+/-17.2 Umg(-1). This is the first demonstration of a crustacean (Na(+),K(+))-ATPase with two ATP hydrolyzing sites. Stimulation by sodium (K(0.5)=5.80+/-0.30 mM), magnesium (K(0.5)=0.48+/-0.02 mM) and potassium ions (K(0.5)=1.61+/-0.06 mM) exhibited site-site interactions, while that by ammonium ions obeyed Michaelis-Menten kinetics (K(M)=4.61+/-0.27 mM). Ouabain (K(I)=147.2+/-7.microM) and orthovanadate (K(I)=11.2+/-0.6 microM) completely inhibited ATPase activity, indicating the absence of contaminating ATPase and/or neutral phosphatase activities. Ammonium and potassium ions synergistically stimulated the enzyme, increasing specific activities up to 90%, suggesting that these ions bind to different sites on the molecule. The presence of each ion modulates enzyme stimulation by the other. The modulation of (Na(+),K(+))-ATPase activity by ammonium ions, and the excretion of NH(4)(+) in benthic crabs are discussed.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Na,K-ATPase activity and epithelial interfaces in gills of the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae)

N.M. Belli; Rogério Oliveira Faleiros; Kelly Cristina Silva Firmino; D.C. Masui; Francisco A. Leone; John C. McNamara; Rosa Prazeres Melo Furriel

Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 per thousand salinity), as well as potential routes of Na+ uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell invaginations, respectively. These findings are discussed regarding the putative movement of Na+ across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations.


Acta Crystallographica Section D-biological Crystallography | 2014

Structural basis for glucose tolerance in GH1 β-glucosidases

Priscila Oliveira de Giuseppe; Tatiana de Arruda Campos Brasil de Souza; Flavio Henrique Moreira Souza; Leticia Maria Zanphorlin; Carla Botelho Machado; Richard John Ward; João Atílio Jorge; Rosa Prazeres Melo Furriel; Mario Tyago Murakami

Product inhibition of β-glucosidases (BGs) by glucose is considered to be a limiting step in enzymatic technologies for plant-biomass saccharification. Remarkably, some β-glucosidases belonging to the GH1 family exhibit unusual properties, being tolerant to, or even stimulated by, high glucose concentrations. However, the structural basis for the glucose tolerance and stimulation of BGs is still elusive. To address this issue, the first crystal structure of a fungal β-glucosidase stimulated by glucose was solved in native and glucose-complexed forms, revealing that the shape and electrostatic properties of the entrance to the active site, including the +2 subsite, determine glucose tolerance. The aromatic Trp168 and the aliphatic Leu173 are conserved in glucose-tolerant GH1 enzymes and contribute to relieving enzyme inhibition by imposing constraints at the +2 subsite that limit the access of glucose to the -1 subsite. The GH1 family β-glucosidases are tenfold to 1000-fold more glucose tolerant than GH3 BGs, and comparative structural analysis shows a clear correlation between active-site accessibility and glucose tolerance. The active site of GH1 BGs is located in a deep and narrow cavity, which is in contrast to the shallow pocket in the GH3 family BGs. These findings shed light on the molecular basis for glucose tolerance and indicate that GH1 BGs are more suitable than GH3 BGs for biotechnological applications involving plant cell-wall saccharification.


Biochimica et Biophysica Acta | 1991

Alkaline phosphatase from rat osseous plates : purification and biochemical characterization of a soluble form

JoséC. Say; Katia Ciuffi; Rosa Prazeres Melo Furriel; Pietro Ciancaglini; Francisco A. Leone

A soluble form of an alkaline phosphatase obtained from rat osseous plates was purified 204-fold with a yield of 24.3%. The purified enzyme showed a single protein band of Mr 80,000 on SDS-PAGE and an apparent molecular weight of 163,000 by gel filtration on Sephacryl S-300 suggesting a dimeric structure for the soluble enzyme. The specific activity of the enzyme at pH 9.4 in the presence of 2 mM MgCl2 was 19,027 U/mg and the hydrolysis of p-nitrophenyl phosphate (K0.5 = 92 microM) showed positive cooperativity (n = 1.5). The purified enzyme showed a broad substrate specificity, however, ATP, bis(p-nitrophenyl) phosphate and pyrophosphate were among the less hydrolyzed substrates assayed. Surprisingly the enzyme was not stimulated by cobalt and manganese ions, in contrast with a 20-25% stimulation observed for magnesium and calcium ions. Zinc ions exerted a strong inhibition on p-nitrophenylphosphatase activity of the enzyme. This paper provides a simple experimental procedure for the isolation of a soluble form of alkaline phosphatase which is induced by demineralized bone matrix during endochondral ossification.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Na+, K+-ATPase activity in gill microsomes from the blue crab, Callinectes danae, acclimated to low salinity: novel perspectives on ammonia excretion.

D.C. Masui; Fernando L. Mantelatto; John C. McNamara; Rosa Prazeres Melo Furriel; Francisco A. Leone

This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH(4)(+), discussed regarding NH(4)(+) excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7+/-16.7 nmol Pi min(-1) mg(-1) and K(0.5)=174.2+/-9.8 mmol L(-1), obeying cooperative kinetics (n(H)=1.2). Stimulation by sodium (V=308.9+/-15.7 nmol Pi min(-1) mg(-1), K(0.5)=7.8+/-0.4 mmol L(-1)), magnesium (299.2+/-14.1 nmol Pi min(-1) mg(-1), K(0.5)=767.3+/-36.1 mmol L(-1)), potassium (300.6+/-15.3 nmol Pi min(-1) mg(-1), K(0.5)=1.6+/-0.08 mmol L(-1)) and ammonium (V=345.1+/-19.0 nmol Pi min(-1) mg(-1), K(0.5)=6.0+/-0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(I)=45.1+/-2.5 micromol L(-1), although affinity for the inhibitor increased (K(I)=22.7+/-1.1 micromol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other.


Colloids and Surfaces B: Biointerfaces | 2003

Adsorption of detergent-solubilized and phospholipase C-solubilized alkaline phosphatase at air/liquid interfaces

Luciano Caseli; Maria Elisabete Darbello Zaniquelli; Rosa Prazeres Melo Furriel; Francisco A. Leone

Abstract To investigate the influence of a hydrophobic anchor on protein adsorption, equilibrium and dynamic aspects of the adsorption of two different solubilized forms of rat osseous plate alkaline phosphatase on Langmuir monolayers of dimyristoylphosphatidic acid (DMPA) were studied. Surface pressure and surface potential measurements at air/liquid interfaces were carried out using the detergent-solubilized form (DSAP) of alkaline phosphatase, which holds a glycosylphosphatidylinositol (GPI) hydrophobic anchor, and the glycosylphosphatidylinositol-specific phospholipase C-solubilized form (PLSAP), lacking the GPI anchor. Similar surface transitions observed for both DMPA and DMPA/PLSAP mixed monolayers indicate that the presence of PLSAP does not promote significant changes in surface packing of the DMPA monolayer. However, PLSAP interacts with the polar portion of the phospholipid even at high lateral compression. The presence of the GPI anchor increases the adsorption of DSAP at a plain air/liquid interface and also enables the penetration of the protein into the DMPA monolayers. The penetration is dependent on both time and surface pressure. Up to 20 mN/m, the surface pressure increases smoothly indicating a diffusion followed by an adsorption process. Above 20 mN/m, after a fast increase, the surface pressure slowly decays to equilibrium values quite close to the initial surface pressures. The results indicate that the molecular packing of the lipid layer drives the enzyme adsorption to the interface either through the GPI anchor or by the polypeptide moiety.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Hemolymph ionic regulation and adjustments in gill (Na+, K+)-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura).

Daniela P. Garçon; D.C. Masui; Fernando L. Mantelatto; Rosa Prazeres Melo Furriel; John C. McNamara; Francisco A. Leone

We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na+, K+)-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 per thousand or 33 per thousand salinity. C. ornatus is isosmotic after acclimation to 21 per thousand but is hyposmotic at 33 per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH4+ modulates enzyme affinity for K+, which increases 187-fold in crabs acclimated to 33 per thousand salinity. The (Na+, K+)-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 per thousand), with little change in KM values (approximately 50 micromol L(-1)). K+ together with NH4+ synergistically stimulated activity to maximum rates of approximately 240 nmol Pi min(-1) mg(-1). KI values for ouabain inhibition (approximately 110 micromol L(-1)) decreased to 44.9 +/- 1.0 micromol L(-1) (21 per thousand) and 28.8 +/- 1.3 micromol L(-1) (33 per thousand) in the presence of both K+ and NH4+. Assays employing various inhibitors suggest the presence of mitochondrial F0F1-, and K+- and V-ATPase activities in the gill microsomes.


Journal of Experimental Zoology | 2010

Structural and Biochemical Correlates of Na+, K+-ATPase Driven Ion Uptake Across the Posterior Gill Epithelium of the True Freshwater Crab, Dilocarcinus pagei (Brachyura, Trichodactylidae)

Rosa Prazeres Melo Furriel; Kelly Cristina Silva Firmino; D.C. Masui; Rogério Oliveira Faleiros; Antonio Hernandes Torres; John C. McNamara

To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+),K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (≈14 µm² membrane per µm³cytoplasm), deep invaginations that house the Na(+),K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 µm² µm⁻²)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 µm² µm⁻²), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+),K(+)-ATPase specific activity resembles marine crabs but is ≈5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two α-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4) (+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water.


Journal of Colloid and Interface Science | 2008

Rat osseous plate alkaline phosphatase as Langmuir monolayer : An infrared study at the air-water interface

Luciano Caseli; D.C. Masui; Rosa Prazeres Melo Furriel; Francisco A. Leone; Maria Elisabete Darbello Zaniquelli; Jhony Orbulescu; Roger M. Leblanc

A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.

Collaboration


Dive into the Rosa Prazeres Melo Furriel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Caseli

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Frederico Leite Fontes

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

E.C.C. Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hector Barrabin

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Helena M. Scofano

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge