Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rose Chesworth is active.

Publication


Featured researches published by Rose Chesworth.


The International Journal of Neuropsychopharmacology | 2010

A behavioural comparison of acute and chronic Δ9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice

Leonora E. Long; Rose Chesworth; Xu-Feng Huang; Iain S. McGregor; Jonathon C. Arnold; Tim Karl

Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.


The International Journal of Neuropsychopharmacology | 2013

Transmembrane domain Nrg1 mutant mice show altered susceptibility to the neurobehavioural actions of repeated THC exposure in adolescence

Leonora E. Long; Rose Chesworth; Xu-Feng Huang; Iain S. McGregor; Jonathon C. Arnold; Tim Karl

Heavy cannabis abuse increases the risk of developing schizophrenia. Adolescents appear particularly vulnerable to the development of psychosis-like symptoms after cannabis use. To test whether the schizophrenia candidate gene neuregulin 1 (NRG1) modulates the effects of cannabinoids in adolescence, we tested male adolescent heterozygous transmembrane domain Nrg1 mutant (Nrg1 TM HET) mice and wild type-like littermates (WT) for their neurobehavioural response to repeated Δ(9)-tetrahydrocannabinol (THC, 10 mg/kg i.p. for 21 d starting on post-natal day 31). During treatment and 48 h after treatment withdrawal, we assessed several behavioural parameters relevant to schizophrenia. After behavioural testing we measured autoradiographic CB(1), 5-HT(2A) and NMDA receptor binding. The hyperlocomotor phenotype typical of Nrg1 mutants emerged after drug withdrawal and was more pronounced in vehicle than THC-treated Nrg1 TM HET mice. All mice were equally sensitive to THC-induced suppression of locomotion. However, mutant mice appeared protected against inhibiting effects of repeated THC on investigative social behaviours. Neither THC nor Nrg1 genotype altered prepulse inhibition. Repeated adolescent THC promoted differential effects on CB(1) and 5-HT(2A) receptor binding in the substantia nigra and insular cortex respectively, decreasing binding in WT while increasing it in Nrg1 TM HET mice. THC also selectively affected 5-HT(2A) receptor binding in several other regions in WT mice, whereas NMDA receptor binding was only affected in mutant mice. Overall, Nrg1 mutation does not appear to increase the induction of psychotomimetic symptoms by repeated adolescent THC exposure but may attenuate some of its actions on social behaviour and schizophrenia-relevant neurotransmitter receptor profiles.


PLOS ONE | 2012

Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice.

Leonora E. Long; Rose Chesworth; Xu-Feng Huang; Alexander Wong; Adena S. Spiro; Iain S. McGregor; Jonathon C. Arnold; Tim Karl

The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABAA receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.


Behavioural Brain Research | 2011

Do transmembrane domain neuregulin 1 mutant mice exhibit a reliable sensorimotor gating deficit

Tim Karl; Thomas H. J. Burne; M. van den Buuse; Rose Chesworth

Evidence suggests that the heterozygous transmembrane domain mutant mouse model for the schizophrenia candidate gene neuregulin 1 (Nrg1 HET) exhibits a deficit in prepulse inhibition (PPI). However, not all mouse models for Nrg1 exhibit PPI deficits. Thus, our study intended to clarify the severity of the initially described PPI deficit in Nrg1 HET mice. For this, Nrg1 mutant mice and wild type-like littermates of one breeding colony were tested for PPI in four different phenotyping facilities in Australia employing a variety of different PPI protocols with fixed and variable interstimulus intervals (ISIs). Testing mutant and wild type-like mice in three Australian phenotyping facilities using PPI protocols with variable ISIs revealed no effect of mutant transmembrane domain Nrg1 on sensorimotor gating. Changes to the startle response and startle response habituation were site/protocol-specific. The employment of two different PPI protocols at the same phenotyping facility revealed a protocol-dependent and site-specific facilitation of PPI in Nrg1 mutant mice compared to wild type-like mice. In conclusion, the often-noted PPI phenotype of the transmembrane domain Nrg1 mutant mouse model is highly PPI protocol-specific and appears sensitive to the particular conditions of the test laboratory. Our study describes wild type-like PPI under most test conditions and across three different laboratories. The research suggests that analysing one of the alleged hallmarks of animal models for schizophrenia must be done carefully: to obtain reliable PPI data it seems necessary to use more than one particular PPI protocol.


Behavioural Brain Research | 2012

Cognition in female transmembrane domain neuregulin 1 mutant mice.

Rose Chesworth; Laura Downey; Warren Logge; Simon Killcross; Tim Karl

Neuregulin 1 (Nrg1) has been implicated in the development of schizophrenia and influences key neurodevelopmental processes such as myelination and neuronal migration. The heterozygous transmembrane domain Nrg1 mutant mouse (Nrg1 TM HET) exhibits a sex-specific phenotype relevant for schizophrenia research, which is characterized by the development of locomotor hyperactivity, social withdrawal, and changes to the serotonergic system. Cognitive impairments are characteristic of schizophrenia patients and male Nrg1 TM HET mice exhibit cognitive deficits in novel object recognition and contextual fear conditioning. Thus, we investigated the cognitive performance of female Nrg1 mutants, using a cognitive test battery for a variety of paradigms, including fear conditioning, cheeseboard, Y maze, object exploration and passive avoidance. Female Nrg1 mutant mice displayed impairments in the fear conditioning tasks, including significantly reduced fear conditioning to a context and a strong trend towards a decreased ability for cue fear conditioning. These cognitive deficits were task-specific, as no differences were seen between mutant and control mice in spatial learning of the cheeseboard for reference memory measures, in the Y-maze for working memory measures, or in novel object recognition and passive avoidance paradigms. These findings indicate that neuregulin 1 plays only a minor role in cognition in female test mice. The current study provides a further behavioural validation of this genetic mouse model for the schizophrenia candidate gene neuregulin 1 and confirms the importance of considering female test animals in animal models for schizophrenia.


PLOS ONE | 2012

Role of abca7 in mouse behaviours relevant to neurodegenerative diseases

Warren Logge; David Cheng; Rose Chesworth; Surabhi Bhatia; Brett Garner; Woojin Scott Kim; Tim Karl

ATP-binding cassette transporters of the subfamily A (ABCA) are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer’s disease. However, Abca7’s role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous Abca7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety) and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs) and Alzheimer’s disease (i.e. cognitive domains). Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in Abca7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female Abca7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in Abca7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, Abca7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.


PLOS ONE | 2013

The Metabotropic Glutamate 5 Receptor Modulates Extinction and Reinstatement of Methamphetamine-Seeking in Mice

Rose Chesworth; Robyn M. Brown; Jee Hyun Kim; Andrew J. Lawrence

Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.


Behavioural Brain Research | 2010

Schizophrenia-relevant behaviours in a genetic mouse model for Y2 deficiency.

Tim Karl; Rose Chesworth; Liesl Duffy; Herbert Herzog

Expression levels of neuropeptide Y (NPY) are changed in schizophrenia patients. However, the direction of changes to NPY expression and the mechanisms behind NPYs impact on the development of the illness is not understood in detail. Here we investigated whether alterations in Y2 activity may be involved in the development of schizophrenia-related behaviours. We examined NPY Y2 receptor deficient male mice in behavioural domains relevant for the illness: locomotion, learning and memory, social interaction and sensorimotor gating (baseline and after acute challenge with psychotropic drugs) and the most relevant tasks were also completed in female Y2 mutants. Our investigations confirmed a hyper-locomotive phenotype for Y2 deficient male mice and no alterations in working and reference memory performance. Mutant males exhibited an increase in social interaction and moderately improved sensorimotor gating. The psychotropic drugs dexamphetamine and MK-801 affected prepulse inhibition similarly, whereas MK-801 appeared to be a slightly more potent stimulant for the acoustic startle response (ASR). Female Y2 deficient mice showed wild type-like performances in social interaction, working memory and prepulse inhibition. However, Y2 mutant females exhibited a moderately increased ASR compared to control mice. Taken together, lack of Y2 signalling in mice not only leads to altered locomotion but also changes social behaviours and affects sensorimotor gating. Thus, Y2 depletion influences a range of behaviours, which are potentially relevant for schizophrenia-related research.


Neuroscience Letters | 2012

The response of neuregulin 1 mutant mice to acute restraint stress

Rose Chesworth; Ernie Yulyaningsih; Emily Cappas; Jonathon C. Arnold; Amanda Sainsbury; Tim Karl

Stress plays a role in the development and severity of psychotic symptoms and there may be a genetic component to stress vulnerability in schizophrenia. Using an established mouse model for schizophrenia, we investigated the behavioural and endocrine response of Nrg1 transmembrane domain mutant mice (Nrg1 HET) and wild type-like (WT) littermates to acute restraint stress. Animals were screened at 3-4 months and 6-7 months of age (before and after onset of hyperlocomotion) for open field behaviour and serum corticosterone levels. In younger mice, stress reduced locomotive and explorative measures and increased anxiety-like behaviour regardless of genotype. Older Nrg1 mutants were less susceptible to the effects of stress on anxiety-related behaviours. All mice responded to restraint stress with robust increases in serum corticosterone. Importantly, the stress-induced increase in corticosterone was more pronounced in Nrg1 mutant than WT mice at the younger but not the older age. Our results suggest that transmembrane domain Nrg1 has only a moderate effect on the acute stress response of mice. The behavioural differences detected between WT and Nrg1 HET mice at the older age were evident without parallel modifications to the glucocorticoid system.


Neuroepigenetics | 2015

Persistent variations in neuronal DNA methylation following cocaine self-administration and protracted abstinence in mice.

Danay Baker-Andresen; Qiong-Yi Zhao; Xiang Li; Bianca Jupp; Rose Chesworth; Andrew J. Lawrence; Timothy W. Bredy

Continued vulnerability to relapse during abstinence is characteristic of cocaine addiction and suggests that drug-induced neuroadaptations persist during abstinence. However, the precise cellular and molecular attributes of these adaptations remain equivocal. One possibility is that cocaine self-administration leads to enduring changes in DNA methylation. To address this possibility, we isolated neurons from medial prefrontal cortex and performed high throughput DNA sequencing to examine changes in DNA methylation following cocaine self-administration. Twenty-nine genomic regions became persistently differentially methylated during cocaine self-administration, and an additional 28 regions became selectively differentially methylated during abstinence. Altered DNA methylation was associated with isoform-specific changes in the expression of co-localizing genes. These results provide the first neuron-specific, genome-wide profile of changes in DNA methylation induced by cocaine self-administration and protracted abstinence. Moreover, our findings suggest that altered DNA methylation facilitates long-term behavioral adaptation in a manner that extends beyond the perpetuation of altered transcriptional states.

Collaboration


Dive into the Rose Chesworth's collaboration.

Top Co-Authors

Avatar

Tim Karl

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonora E. Long

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Lawrence

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert Herzog

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jee Hyun Kim

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Liesl Duffy

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Robyn M. Brown

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge