Roslina Ismail
National University of Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roslina Ismail.
Soldering & Surface Mount Technology | 2018
Fakhrozi Che Ani; Azman Jalar; A.A. Saad; Chu Yee Khor; Roslina Ismail; Zuraihana Bachok; Mohamad Aizat Abas; Norinsan Kamil Othman
Purpose This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly. Design/methodology/approach This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine. Findings The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards. Practical implications This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry. Originality/value The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.
Soldering & Surface Mount Technology | 2017
Izhan Abdullah; Muhammad Nubli Zulkifli; Azman Jalar; Roslina Ismail
Purpose The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature. Design/methodology/approach Tensile tests with different strain rates of 1.5 × 10−6, 1.5 × 10−5, 1.5 × 10−4, 1.5 × 10−3, 1.5 × 10−2 and 1.5 × 10−1 s−1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress-strain curves and mechanical properties such as yield strength, ultimate tensile strength and elongation were determined from the tensile tests. A microstructure analysis was performed by measuring the average grain size and the aspect ratio of the grains. Findings It was observed that higher strain rates showed pronounced dynamic recrystallization on the stress-strain curve. The increase in the strain rates also decreased the grain size of the SAC305 solder wire. It was found that higher strain rates had a pronounced effect on changing the deformation or shape of the grain in a longitudinal direction. An increase in the strain rates increased the tensile strength and ductility of the SAC solder wire. The primary deformation mechanism for strain rates below 1.5 × 10−1 s−1 was grain boundary sliding, whereas the deformation mechanism for strain rates of 1.5 × 10−1 s−1 was diffusional creep. Originality/value Most of the studies regarding the deformation behaviour of lead-free solder usually consider the effect of the elevated temperature. For the current analysis, the effect of the temperature is kept constant at room temperature to analyze the deformation of lead-free solder wire solely because of changes of strain rates, and this is the originality of this paper.
Anti-corrosion Methods and Materials | 2015
Solhan Yahya; Norinsan Kamil Othman; Abdul Razak Daud; Azman Jalar; Roslina Ismail
Purpose – This paper aims to investigate the influence of temperature and lignin concentration on the inhibition of carbon steel corrosion in 1 M HCl. Design/methodology/approach – Weight loss corrosion tests were performed at different temperatures in the range of 30-70°C (303-343 K). Findings – It was found that the corrosion inhibition efficiency (IE) of lignin on the carbon steel decreased when the temperature was increased from 60 to 70°C. However, at lower temperatures ranging from 30 to 50°C, the IE improved, due to occurrence of lignin adsorption on the surface of metal specimens. The IE was higher with increasing lignin concentration, thus reducing the weight loss of the carbon steel. The adsorption phenomenon involved exothermic processes because the value of enthalpy of adsorption (ΔH°ads) < 0 and Gibbs free energy of adsorption (ΔG°ads) were less negative with increase in temperature. The entropy of adsorption (ΔS°ads) had negative values, representing the decrease in disorder of adsorption. T...
Microelectronics International | 2015
Fuaida Harun; Roslina Ismail; Azman Jalar; Shahrum Abdullah
Purpose – This paper aims to analyze the effect of Au wire size and location of hook during wire pulling test to identify the variation of results obtained. Design/methodology/approach – Two hook locations, namely, location A and location B were used to analyze the effect of hook location. Location A was the same as the hook location required by MIL-STD-883E standard, whereas location B was located near to the second bond. The correlation between new purposed failure modes and MIL-STD-883E standard was developed to reflect on the pull strength with the physical failure. Findings – It was observed that fine pitch Au wire has higher variation and lower process capability of pull strength. Au wire pulled by the hook at location B provides a more representative result compared to that at location A. Fifty per cent or more of Au remnant is required to be considered as a good and reliable Au wedge bond based on the new purposed failure modes. Originality/value – The evaluation of gold (Au) wedge bond requires a...
Soldering & Surface Mount Technology | 2017
Izhan Abdullah; Muhammad Nubli Zulkifli; Azman Jalar; Roslina Ismail
Purpose The relationship between the bulk and localized mechanical properties is critically needed, especially to understand the mechanical performance of solder alloy because of smaller sizing trend of solder joint. The purpose of this paper is to investigate the relationship between tensile and nanoindentation tests toward the mechanical properties and deformation behavior of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature. Design/methodology/approach Tensile test with different strain rates of 1.5 × 10-4 s-1, 1.5 × 10-3 s-1, 1.5 × 10-2 s-1 and 1.5 × 10-1 s-1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress–strain curves and mechanical properties such as yield strength (YS), ultimate tensile strength (UTS) and elongation were determined from the tensile test. Load-depth (P-h) profiles and micromechanical properties, namely, hardness and reduced modulus, were obtained from nanoindentation test. In addition, the deformation mechanisms of SAC305 lead-free solder wire were obtained by measuring the range of creep parameters, namely, stress exponent and strain rate sensitivity, using both of tensile and nanoindentation data. Findings It was observed that qualitative results obtained from tensile and nanoindentation tests can be used to identify the changes of the microstructure. The occurrence of dynamic recrystallization and the increase of ductility obtained from tensile test can be used to indicate the increment of grain refinement or dislocation density. Similarly, the occurrence of earliest pop-in event and the highest occurrence of pop-in event observed from nanoindentation also can be used to identify the increase of grain refinement and dislocation density. An increment of strain rates increases the YS and ultimate UTS of SAC305 solder wire. Similarly, the variation of hardness of SAC305 solder wire has the similar trend or linear relationship with the variation of YS and UTS, following the Tabor relation. In contrast, the variation of reduced modulus has a different trend compared to that of hardness. The deformation behavior analysis based on the Holomon’s relation for tensile test and constant load method for nanoindentation test showed the same trend but with different deformation mechanisms. The transition of responsible deformation mechanism was obtained from both tensile and nanoindentation tests which from grain boundary sliding (GBS) to grain boundary diffusion and dislocation climb to grain boundary slide, respectively. Originality/value For the current analysis, the relationship between tensile and nanoindentation test was analyzed specifically for the SAC305 lead-free solder wire, which is still lacking. The findings provide a valuable data, especially when comparing the trend and mechanism involved in bulk (tensile) and localized (nanoindentation) methods of testing.
Materials Science Forum | 2016
Norliza Ismail; Roslina Ismail; Nur Izni Abd Aziz; Azman Jalar
Wettability for lead free solder 99.0Sn-0.3Ag-0.7Cu (SAC237) with addition of different weight percentage carbon nanotube after thermal treatment was investigated. SAC 237 solder powder with flux was mixed with 0.01%, 0.02%, 0.03% and 0.04% carbon nanotubes (CNTs) to form SAC-CNTs solder paste. Printed solder paste on test board with Cu surface finish was then reflow under 270°C temperature and isothermal aging at 150°C for 0,200 and 400 hours. Wettability of SAC-CNT solder was determined by measuring contact angle using optical microscope and image analyzer. As a result, from reflow process right through 400 hours of thermal aging, SAC237 with 0.04% CNT has the lowest contact angle as compared to other SAC-CNTs and SAC237 solder. As a conclusion, addition of carbon nanotubes into solder SAC237 improved their wettability on Cu substrate, especially at 0.04% of CNTs.
Materials Science Forum | 2016
Roslina Ismail; Fuaida Harun; Azman Jalar; Shahrum Abdullah
This work is a contribution towards the understanding of wire bond integrity and reliability in relation to their microstructural and mechanical properties in semiconductor packaging.The effect of surface roughness and hardness of leadframe on the bondability of Au wedge bond still requires detail analysis. Two type of leadframes namely leadframe A and leadframe B were chosen and scanning electron microscope (SEM) and optical microscope were used to inspect the surface morphology of leadframes and the quality of created Au wedge bond after wire bonding process. It was found that there were significant differences in the surface morphologies between these two leadframes. The atomic force microscopy (AFM) which was utilized to measure the average roughness, Ra of lead finger confirms that leadframe A has the highest Ra with value of 166.46 nm compared to that of leadframe B with value of 85.89 nm. While hardness value of different lead finger from the selected leadframe A and B obtained using Vicker microhardness tester are 180.9 VH and 154.2VH respectively.
Materials Science Forum | 2016
Maria Abu Bakar; Azman Jalar; Roslina Ismail; Abdul Razak Daud
This study used nanoindentation technique in order to examine the micromechanical properties of Sn3.0Ag0.5Cu (SAC305) on Electroless Nickel Immersion Gold (ENIG) surface finished Cu substrate subjected to high temperature storage. Lead free solder paste of SAC305 were soldered on ENIG substrate by reflow soldering at 215 °C for 8 second. The soldered samples were exposed to high temperature storage at 180 °C for 0, 200, 400, 600, 800 and 1000 hours. Micromechanical properties show that the solder hardness is decreasing with the HTS time from 239.13 MPa for 0 hour to 178.96 MPa for 1000 hours while the reduce modulus results has increased from 62. 16 x 103 MPa for 0 hour to 82.13 x 103 MPa for 1000 hours. The value of hardness and reduced modulus from nanoindentation approach indicate the occurrence of plastic and elastic deformation throughout the test.
Materials Science Forum | 2016
Roslina Ismail; Fuaida Harun; Azman Jalar; Shahrum Abdullah
The in-situ inspection of ultrasonic vibration of wire bonder capillary was carried out using laser interferometer in order to analyze the formation of Au wedge bond. It was observed that the changes in ultrasonic vibration can be used to describe process of bonding formation. The loss of ultrasonic energy was exhibited in ultrasonic vibration waveform of wire bonding on leadframe A. This observation is due to the low frictional energy and high deformation of Au wedge bond on leadframe A. The lower pull strength obtained by Au wedge bond further confirms the reduction of bond formation on leadframe A.
Materials Science Forum | 2016
Norliza Ismail; Roslina Ismail; Nik Khairul Amilin Nik Ubaidillah; Azman Jalar; Norazwani Muhammad Zain
The effect of substrate surface roughness on the wettability of SAC237 (Sn 99.9%, Ag 0.3%, Cu 0.7%) with difference percentage of CNT on copper substrate was investigated. Solder paste of SAC 237 without CNT, 0.01% and 0.04% of CNT were reflowed at 270°C on different surface roughness of Cu substrate (abrasive number 240, 400, 600, 800). Contact angle of soldered samples measured by Infinite Focus Microscope (IFM). As a result, contact angle value of investigated solders range 7° to 20°. Contact angle obtained decreases with the increasing surface roughness of Cu substrate. This demonstrates that rougher substrate enhance the wettability of the solders. Addition of CNT also effects the wettability of investigated solders. Higher composition of CNT show better wettability.