Ross A. Okimoto
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ross A. Okimoto.
Journal of Clinical Oncology | 2005
Daphne W. Bell; Thomas J. Lynch; Patricia L. Harris; Ross A. Okimoto; Brian W. Brannigan; Dennis C. Sgroi; Beth Muir; Markus J. Riemenschneider; Renee B. Iacona; Annetta Krebs; David H. Johnson; Giuseppe Giaccone; Roy S. Herbst; Christian Manegold; Masahiro Fukuoka; Mark G. Kris; José Baselga; Judith S. Ochs; Daniel A. Haber
PURPOSE Most cases of non-small-cell lung cancer (NSCLC) with dramatic responses to gefitinib have specific activating mutations in the epidermal growth factor receptor (EGFR), but the predictive value of these mutations has not been defined in large clinical trials. The goal of this study was to determine the contribution of molecular alterations in EGFR to response and survival within the phase II (IDEAL) and phase III (INTACT) trials of gefitinib. PATIENTS AND METHODS We analyzed the frequency of EGFR mutations in lung cancer specimens from both the IDEAL and INTACT trials and compared it with EGFR gene amplification, another genetic abnormality in NSCLC. RESULTS EGFR mutations correlated with previously identified clinical features of gefitinib response, including adenocarcinoma histology, absence of smoking history, female sex, and Asian ethnicity. No such association was seen in patients whose tumors had EGFR amplification, suggesting that these molecular markers identify different biologic subsets of NSCLC. In the IDEAL trials, responses to gefitinib were seen in six of 13 tumors (46%) with an EGFR mutation, two of seven tumors (29%) with amplification, and five of 56 tumors (9%) with neither mutation nor amplification (P = .001 for either EGFR mutation or amplification v neither abnormality). Analysis of the INTACT trials did not show a statistically significant difference in response to gefitinib plus chemotherapy according to EGFR genotype. CONCLUSION EGFR mutations and, to a lesser extent, amplification appear to identify distinct subsets of NSCLC with an increased response to gefitinib. The combination of gefitinib with chemotherapy does not improve survival in patients with these molecular markers.
Nature Genetics | 2005
Daphne W. Bell; Ira Gore; Ross A. Okimoto; Nadia Godin-Heymann; Raffaella Sordella; Roseann Mulloy; Sreenath V. Sharma; Brian W. Brannigan; Gayatry Mohapatra; Jeffrey Settleman; Daniel A. Haber
Somatic activating mutations in EGFR identify a subset of non-small cell lung cancer that respond to tyrosine kinase inhibitors. Acquisition of drug resistance is linked to a specific secondary somatic mutation, EGFR T790M. Here we describe a family with multiple cases of non-small cell lung cancer associated with germline transmission of this mutation. Four of six tumors analyzed showed a secondary somatic activating EGFR mutation, arising in cis with the germline EGFR mutation T790M. These observations implicate altered EGFR signaling in genetic susceptibility to lung cancer.
American Journal of Human Genetics | 2003
Anja Wagner; Alicia Barrows; Juul T. Wijnen; Heleen M. van der Klift; Patrick Franken; Paul Verkuijlen; Hidewaki Nakagawa; Marjan Geugien; Shantie Jaghmohan-Changur; Cor Breukel; Hanne Meijers-Heijboer; Hans Morreau; Marjo van Puijenbroek; John Burn; Stephany Coronel; Yulia Kinarski; Ross A. Okimoto; Patrice Watson; Jane F. Lynch; Albert de la Chapelle; Henry T. Lynch; Riccardo Fodde
The identification of germline mutations in families with HNPCC is hampered by genetic heterogeneity and clinical variability. In previous studies, MSH2 and MLH1 mutations were found in approximately two-thirds of the Amsterdam-criteria-positive families and in much lower percentages of the Amsterdam-criteria-negative families. Therefore, a considerable proportion of HNPCC seems not to be accounted for by the major mismatch repair (MMR) genes. Does the latter result from a lack of sensitivity of mutation detection techniques, or do additional genes underlie the remaining cases? In this study we address these questions by thoroughly investigating a cohort of clinically selected North American families with HNPCC. We analyzed 59 clinically well-defined U.S. families with HNPCC for MSH2, MLH1, and MSH6 mutations. To maximize mutation detection, different techniques were employed, including denaturing gradient gel electrophoresis, Southern analysis, microsatellite instability, immunohistochemistry, and monoallelic expression analysis. In 45 (92%) of the 49 Amsterdam-criteria-positive families and in 7 (70%) of the 10 Amsterdam-criteria-negative families, a mutation was detected in one of the three analyzed MMR genes. Forty-nine mutations were in MSH2 or MLH1, and only three were in MSH6. A considerable proportion (27%) of the mutations were genomic rearrangements (12 in MSH2 and 2 in MLH1). Notably, a deletion encompassing exons 1-6 of MSH2 was detected in seven apparently unrelated families (12% of the total cohort) and was subsequently proven to be a founder. Screening of a second U.S. cohort with HNPCC from Ohio allowed the identification of two additional kindreds with the identical founder deletion. In the present study, we show that optimal mutation detection in HNPCC is achieved by combining accurate and expert clinical selection with an extensive mutation detection strategy. Notably, we identified a common North American deletion in MSH2, accounting for approximately 10% of our cohort. Genealogical, molecular, and haplotype studies showed that this deletion represents a North American founder mutation that could be traced back to the 19th century.
Clinical Cancer Research | 2006
Eunice L. Kwak; Janusz Jankowski; Sarah P. Thayer; Gregory Y. Lauwers; Brian W. Brannigan; Patricia L. Harris; Ross A. Okimoto; David R. Driscoll; David Ferry; Beth Muir; Jeffrey Settleman; Charles S. Fuchs; Matthew H. Kulke; David P. Ryan; Jeffrey W. Clark; Dennis C. Sgroi; Daniel A. Haber; Daphne W. Bell
Purpose: Specific activating mutations within the epidermal growth factor receptor (EGFR) identify a subset of non–small cell lung cancers with dramatic sensitivity to the specific tyrosine kinase inhibitors (TKI), gefitinib and erlotinib. Despite the abundant expression of EGFR protein in a broad range of epithelial cancers, EGFR mutations have not been reported in a substantial fraction of other cancers. Given recent reports of TKI-responsive cases of esophageal and pancreatic cancer, this study was designed to determine the prevalence of EGFR mutations in these gastrointestinal cancers. Experimental Design: We sequenced exons 18 to 21 of EGFR from 21 cases of Barretts esophagus, 5 cases of high-grade esophageal dysplasia, 17 cases of esophageal adenocarcinoma, and 55 cases of pancreatic adenocarcinoma. Subsets of esophageal (n = 7) and pancreatic cancer cases (n = 5) were obtained from patients who were subsequently treated with gefitinib or erlotinib-capecitabine, respectively. Results: Mutations of EGFR were identified in two esophageal cancers (11.7%), three cases of Barretts esophagus (14.2%), and two pancreatic cancers (3.6%). The mutations consisted of the recurrent missense L858R and in-frame deletion delE746-A750, previously characterized as activating EGFR mutations in non–small cell lung cancer. We also identified the TKI drug resistance–associated EGFR T790M mutation in an untreated case of Barretts esophagus and the corresponding adenocarcinoma. Conclusion: The presence of activating mutations within EGFR in both esophageal and pancreatic adenocarcinomas defines a previously unrecognized subset of gastrointestinal tumors in which EGFR signaling may play an important biological role. EGFR mutations in premalignant lesions of Barretts esophagus also point to these as an early event in transformation of the esophageal epithelium. The role of genotype-directed TKI therapy should be tested in prospective clinical trials.
Clinical Cancer Research | 2005
Ezra E.W. Cohen; Mark W. Lingen; Leslie E. Martin; Patricia L. Harris; Brian W. Brannigan; Ross A. Okimoto; Dennis C. Sgroi; Sonika Dahiya; Beth Muir; John R. Clark; James W. Rocco; Everett E. Vokes; Daniel A. Haber; Daphne W. Bell
Purpose: Small-molecule tyrosine kinase inhibitors (TKI) of the epidermal growth factor receptor (EGFR) have shown modest yet reproducible response rates in patients with squamous cell carcinoma of the head and neck (SCCHN). Somatic mutations in EGFR have recently been shown to be predictive of a clinical response in patients with non–small cell lung cancer (NSCLC) treated with these inhibitors. The objective of this study was to determine if such mutations, or recently reported mutations in ERBB2, also underlie EGFR-TKI responsiveness in SCCHN patients. Experimental Design: We sequenced the kinase domain of EGFR and exon 20 of ERBB2 in tumor specimens from eight responsive patients. In addition, mutational analysis was done on tumor specimens from nine gefitinib nonresponders and 65 unselected cases of SCCHN. Results: None of eight TKI-responsive specimens had mutations within the kinase domain of EGFR. EGFR amplification was also not associated with drug responsiveness. However, a single responsive case had a somatic missense mutation within exon 20 of ERBB2. Conclusion: Our data indicate that unlike NSCLC, EGFR kinase mutations are rare in unselected cases of SCCHN within the United States and are not linked to gefitinib or erlotinib responses in SCCHN. Alternative mechanisms, including ERBB2 mutations, may underlie responsiveness in this tumor type.
Nature Medicine | 2015
Gorjan Hrustanovic; Victor Olivas; Evangelos Pazarentzos; Asmin Tulpule; Saurabh Asthana; Collin M. Blakely; Ross A. Okimoto; Luping Lin; Dana S. Neel; Amit J. Sabnis; Jennifer Flanagan; Elton Chan; Marileila Varella-Garcia; Dara L. Aisner; Aria Vaishnavi; Sai-Hong Ignatius Ou; Eric A. Collisson; Eiki Ichihara; Philip C. Mack; Christine M. Lovly; Niki Karachaliou; Rafael Rosell; Jonathan W. Riess; Robert C. Doebele; Trever G. Bivona
One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS–mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRASWT) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK–positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes.
Blood | 2008
Woo J. Kim; Ross A. Okimoto; Louise E. Purton; Goodwin M; Farshid Dayyani; David A. Sweetser; Andrea I. McClatchey; Olivier Bernard; A T Look; Daphne W. Bell; David T. Scadden; Daniel A. Haber
Ceramide is a lipid second messenger derived from the hydrolysis of sphingomyelin by sphingomyelinases (SMases) and implicated in diverse cellular responses, including growth arrest, differentiation, and apoptosis. Defects in the neutral SMase (nSMase) gene Smpd3, the primary regulator of ceramide biosynthesis, are responsible for developmental defects of bone; regulation of ceramide levels have been implicated in macrophage differentiation, but this pathway has not been directly implicated in human cancer. In a genomic screen for gene copy losses contributing to tumorigenesis in a mouse osteosarcoma model, we identified a somatic homozygous deletion specifically targeting Smpd3. Reconstitution of SMPD3 expression in mouse tumor cells lacking the endogenous gene enhanced tumor necrosis factor (TNF)-induced reduction of cell viability. Nucleotide sequencing of the highly conserved SMPD3 gene in a large panel of human cancers revealed mutations in 5 (5%) of 92 acute myeloid leukemias (AMLs) and 8 (6%) of 131 acute lymphoid leukemias (ALLs), but not in other tumor types. In a subset of these mutations, functional analysis indicated defects in protein stability and localization. Taken together, these observations suggest that disruption of the ceramide pathway may contribute to a subset of human leukemias.
Cancer Research | 2006
Jingyung Hur; Daphne W. Bell; Kathleen L. Dean; Kathryn R. Coser; Pablo C. Hilario; Ross A. Okimoto; Erica M. Tobey; Shannon Smith; Kurt J. Isselbacher; Toshi Shioda
Induction of mRNA for BIK proapoptotic protein by doxorubicin or gamma-irradiation requires the DNA-binding transcription factor activity of p53. In MCF7 cells, pure antiestrogen fulvestrant also induces BIK mRNA and apoptosis. Here, we provide evidence that, in contrast to doxorubicin or gamma-irradiation, fulvestrant induction of BIK mRNA is not a direct effect of the transcriptional activity of p53, although p53 is necessary for this induction. It is known that p53 up-regulated modulator of apoptosis (PUMA) mRNA is induced directly by the transcriptional activity of p53. Whereas gamma-irradiation induced both BIK and PUMA mRNA, only BIK mRNA was induced by fulvestrant. Whereas both fulvestrant and doxorubicin induced BIK mRNA, only doxorubicin enhanced the DNA-binding activity of p53 and induced PUMA mRNA. Small interfering RNA (siRNA) suppression of p53 expression as well as overexpression of dominant-negative p53 effectively inhibited the fulvestrant induction of BIK mRNA, protein, and apoptosis. Transcriptional activity of a 2-kb BIK promoter, which contained an incomplete p53-binding sequence, was not affected by fulvestrant when tested by reporter assay. Fulvestrant neither affected the stability of the BIK mRNA transcripts. Interestingly, other human breast cancer cells, such as ZR75-1, constitutively expressed BIK mRNA even without fulvestrant. In these cells, however, BIK protein seemed to be rapidly degraded by proteasome, and siRNA suppression of BIK in ZR75-1 cells inhibited apoptosis induced by MG132 proteasome inhibitor. These results suggest that expression of BIK in human breast cancer cells is regulated at the mRNA level by a mechanism involving a nontranscriptional activity of p53 and by proteasomal degradation of BIK protein.
Nature Genetics | 2017
Ross A. Okimoto; Frank Breitenbuecher; Victor Olivas; Wei Wu; Beatrice Gini; Matan Hofree; Saurabh Asthana; Gorjan Hrustanovic; Jennifer Flanagan; Asmin Tulpule; Collin M. Blakely; Henry J Haringsma; Andrew Simmons; Kyle Gowen; James Suh; Vincent A. Miller; Siraj M. Ali; Martin Schuler; Trever G. Bivona
Metastasis is the leading cause of death in people with lung cancer, yet the molecular effectors underlying tumor dissemination remain poorly defined. Through the development of an in vivo spontaneous lung cancer metastasis model, we show that the developmentally regulated transcriptional repressor Capicua (CIC) suppresses invasion and metastasis. Inactivation of CIC relieves repression of its effector ETV4, driving ETV4-mediated upregulation of MMP24, which is necessary and sufficient for metastasis. Loss of CIC, or an increase in levels of its effectors ETV4 and MMP24, is a biomarker of tumor progression and worse outcomes in people with lung and/or gastric cancer. Our findings reveal CIC as a conserved metastasis suppressor, highlighting new anti-metastatic strategies that could potentially improve patient outcomes.
Cancer Research | 2006
Gromoslaw A. Smolen; Beth Muir; Gayatry Mohapatra; Anne Barmettler; Woo J. Kim; Miguel Rivera; Ross A. Okimoto; E. L. Kwak; Sonika Dahiya; Judy Garber; Daphne W. Bell; Dennis C. Sgroi; Lynda Chin; Deng Cx; Daniel A. Haber
In a screen for gene copy number alterations in mouse mammary tumors initiated by loss of the Brca1 and Trp53 genes, we observed that the majority (11 of 15; 73%) had high-level amplification of wild-type Met, encoding a growth factor receptor implicated in tumor progression. Met amplification was localized to unstable double minute chromosomes and was uniquely found in mouse breast tumors driven by loss of Brca1 and Trp53. Whereas analogous MET amplification was not found in human breast cancers, the identification of a dominant somatic genetic lesion in the Brca1/Trp53 mouse model suggests that recurrent secondary hits may also exist in BRCA1-initiated human breast cancer.