Rozalyn M. Anderson
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rozalyn M. Anderson.
Science | 2009
Rozalyn M. Anderson; Sterling C. Johnson; Erik K. Kastman; Kristopher J. Kosmatka; T. Mark Beasley; David B. Allison; Christina Cruzen; Heather A. Simmons; Joseph W. Kemnitz; Richard Weindruch
Starved to Life? Caloric restriction—reducing the calories ingested by around 30% of that of a normal, fit individual—leads to substantial increases in life span in experimental animals. In an extensive study of caloric restriction in primates, Colman et al. (p. 201) report that rhesus monkeys, which were subjected to caloric restriction as adults and followed for the last 20 years, show decreased mortality and delayed onset of age-related diseases when compared to normally fed control animals. If compliance with such a diet were not so difficult, many humans would be strongly tempted to enjoy the decreased incidence of brain degeneration, cardiovascular disease, diabetes, and cancer apparent in this population of monkeys. Age-associated death and onset of pathologies are delayed by controlled caloric restriction, thus prolonging life span. Caloric restriction (CR), without malnutrition, delays aging and extends life span in diverse species; however, its effect on resistance to illness and mortality in primates has not been clearly established. We report findings of a 20-year longitudinal adult-onset CR study in rhesus monkeys aimed at filling this critical gap in aging research. In a population of rhesus macaques maintained at the Wisconsin National Primate Research Center, moderate CR lowered the incidence of aging-related deaths. At the time point reported, 50% of control fed animals survived as compared with 80% of the CR animals. Furthermore, CR delayed the onset of age-associated pathologies. Specifically, CR reduced the incidence of diabetes, cancer, cardiovascular disease, and brain atrophy. These data demonstrate that CR slows aging in a primate species.
Nature | 2003
Rozalyn M. Anderson; Kevin J. Bitterman; Jason G. Wood; Oliver Medvedik; David A. Sinclair
Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms.
Nature Communications | 2014
T. Mark Beasley; Joseph W. Kemnitz; Sterling C. Johnson; Richard Weindruch; Rozalyn M. Anderson
Caloric restriction (CR) without malnutrition increases longevity and delays the onset of age-associated disorders in short-lived species, from unicellular organisms to laboratory mice and rats. The value of CR as a tool to understand human ageing relies on translatability of CR’s effects in primates. Here we show that CR significantly improves age-related and all-cause survival in monkeys on a long-term ~30% restricted diet since young adulthood. These data contrast with observations in the 2012 NIA intramural study report, where a difference in survival was not detected between control-fed and CR monkeys. A comparison of body weight of control animals from both studies with each other, and against data collected in a multi-centred relational database of primate ageing, suggests that the NIA control monkeys were effectively undergoing CR. Our data indicate that the benefits of CR on ageing are conserved in primates.
Trends in Endocrinology and Metabolism | 2010
Rozalyn M. Anderson; Richard Weindruch
Caloric restriction (CR) without malnutrition slows the aging process and extends lifespan in diverse species by unknown mechanisms. The inverse linear relationship between calorie intake and lifespan suggests that regulators of energy metabolism are important in the actions of CR. Studies in several species reveal tissue-specific changes in energy metabolism with CR and suggest that metabolic reprogramming plays a critical role in its mechanism of aging retardation. We herein describe common signatures of CR and suggest how they can slow aging. We discuss recent advances in understanding the function of key metabolic regulators that probably coordinate the response to altered nutrient availability with CR and how the pathways they regulate can retard the aging process.
Toxicologic Pathology | 2009
Rozalyn M. Anderson; Dhanansayan Shanmuganayagam; Richard Weindruch
It is widely accepted that caloric restriction (CR) without malnutrition delays the onset of aging and extends lifespan in diverse animal models including yeast, worms, flies, and laboratory rodents. The mechanism underlying this phenomenon is still unknown. We have hypothesized that a reprogramming of energy metabolism is a key event in the mechanism of CR (Anderson and Weindruch 2007). Data will be presented from studies of mice on CR, the results of which lend support to this hypothesis. Effects of long-term CR (but not short-term CR) on gene expression in white adipose tissue (WAT) are overt. In mice and monkeys, a chronic 30% reduction in energy intake yields a decrease in adiposity of approximately 70%. In mouse epididymal WAT, long-term CR causes overt shifts in the gene expression profile: CR increases the expression of genes involved in energy metabolism (Higami et al. 2004), and it down-regulates the expression of more than 50 pro-inflammatory genes (Higami et al. 2006). Whether aging retardation occurs in primates on CR is unknown. We have been investigating this issue in rhesus monkeys subjected to CR since 1989 and will discuss the current status of this project. A new finding from this project is that CR reduces the rate of age-associated muscle loss (sarcopenia) in monkeys (Colman et al. 2008).
Aging Cell | 2008
Rozalyn M. Anderson; Jamie L. Barger; Michael G. Edwards; Kristina H. Braun; Clare E. O’Connor; Tomas A. Prolla; Richard Weindruch
There is increasing evidence that longevity and stress resistance are connected, but the mechanism is unclear. We report that mitochondria are regulated in response to oxidative stress and calorie restriction through a shared mechanism involving peroxisome proliferator‐activated receptor‐γ co‐activator 1α (PGC‐1α). We demonstrate that PGC‐1α subcellular distribution is regulated, and its transcriptional activity is promoted through SIRT1‐dependent nuclear accumulation. In addition, the duration of PGC‐1α activity is regulated by glycogen synthase kinase beta (GSK3β), which targets PGC‐1α for intranuclear proteasomal degradation. This mechanism of regulation permits the rapidity and persistence of PGC‐1α activation to be independently controlled. We provide evidence that this pathway of PGC‐1α regulation occurs in vivo in mice, both in the oxidative stress response and with calorie restriction. Our data show how mitochondrial function may be adapted in response to external stimuli, and support the concept that such adaptation is critically involved in cellular survival and in lifespan extension by calorie restriction.
Science | 2003
Rozalyn M. Anderson; Magda Latorre-Esteves; Ana Rute Neves; Siva Lavu; Oliver Medvedik; Christopher M. Taylor; Konrad T. Howitz; Helena Santos; David A. Sinclair
Calorie restriction (CR) slows aging in numerous species. In the yeast Saccharomyces cerevisiae, this effect requires Sir2, a conserved NAD+-dependent deacetylase. We report that CR reduces nuclear NAD+ levels in vivo. Moreover, the activity of Sir2 and its human homologue SIRT1 are not affected by physiological alterations in the NAD+:NADH ratio. These data implicate alternate mechanisms of Sir2 regulation by CR.
BMC Genomics | 2007
Michael G. Edwards; Rozalyn M. Anderson; Ming Yuan; Christina Kendziorski; Richard Weindruch; Tomas A. Prolla
BackgroundAging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging.ResultsWe identified 712 transcripts that are differentially expressed in young (5 month old) and old (25-month old) mouse skeletal muscle. Caloric restriction (CR) completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P < 0.05), while CR significantly lowered expression levels for these genes as compared to control fed old mice (P < 0.05). Age-related induction of p53-related genes was observed in multiple tissues, but was not observed in young SOD2+/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue.ConclusionThese observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.
Nature Communications | 2017
Julie A. Mattison; T. Mark Beasley; David B. Allison; Joseph W. Kemnitz; George S. Roth; Donald K. Ingram; Richard Weindruch; Rafael de Cabo; Rozalyn M. Anderson
Caloric restriction (CR) without malnutrition extends lifespan and delays the onset of age-related disorders in most species but its impact in nonhuman primates has been controversial. In the late 1980s two parallel studies were initiated to determine the effect of CR in rhesus monkeys. The University of Wisconsin study reported a significant positive impact of CR on survival, but the National Institute on Aging study detected no significant survival effect. Here we present a direct comparison of longitudinal data from both studies including survival, bodyweight, food intake, fasting glucose levels and age-related morbidity. We describe differences in study design that could contribute to differences in outcomes, and we report species specificity in the impact of CR in terms of optimal onset and diet. Taken together these data confirm that health benefits of CR are conserved in monkeys and suggest that CR mechanisms are likely translatable to human health.
Biochimica et Biophysica Acta | 2009
Rozalyn M. Anderson; Tomas A. Prolla
Deregulation of mitochondrial function is a common feature in multiple aspects of aging. In addition to playing a role in aging-associated disease, decline in mitochondrial energy metabolism is likely to be important in the development of metabolic disease. Furthermore, altered mitochondrial function is a conserved feature in caloric restriction--a dietary intervention that delays aging in diverse species. The transcriptional co-activator PGC-1alpha is a critical regulator of mitochondrial energy metabolism and biogenesis. PGC-1alpha is uniquely poised as a potential target for correcting the effects of age on mitochondrial decline. We describe the cellular and tissue specific mechanisms of PGC-1alpha regulation and illustrate how these pathways may be involved in the aging process.