Rüdiger Pakmor
Heidelberg Institute for Theoretical Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rüdiger Pakmor.
Nature | 2010
Rüdiger Pakmor; M. Kromer; F. K. Röpke; S. A. Sim; Ashley J. Ruiter; W. Hillebrandt
Type Ia supernovae are thought to result from thermonuclear explosions of carbon–oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of ∼0.9M⊙. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M⊙ to 0.9M⊙.
Monthly Notices of the Royal Astronomical Society | 2013
Ivo R. Seitenzahl; F. Ciaraldi-Schoolmann; F. K. Röpke; M. Fink; W. Hillebrandt; M. Kromer; Rüdiger Pakmor; Ashley J. Ruiter; S. A. Sim; Stefan Taubenberger
We present results for a suite of fourteen three-dimensional, high resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN I a simulations with detailed isotopic yield information. As such, it may serve as a database for Chandrasekhar-mass delayeddetonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ t he deflagration to detonation transition (DDT) probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300, and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with central density of 2.9× 10 9 g cm −3 , plus in addition one high central density (5.5× 10 9 g cm −3 ) and one low central density (1.0× 10 9 g cm −3 ) rendition of the 100 ignition kernel configuration. For each simulatio n we determined detailed nucleosynthetic yields by post-processing 10 6 tracer particles with a 384 nuclide reaction network. All delayed detonation models result in explosions unbinding the white dwarf, producing a range of 56 Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron group isotopes are not found at the lowest velocities, but rather at intermediate velocities (∼3, 000− 10, 000 km s −1 ) in a shell surrounding a 56 Ni-rich core. The models further predict relatively low velocity oxygen and carbon, with typical minimum velocities around 4, 000 and 10, 000 km s −1 , respectively.
Monthly Notices of the Royal Astronomical Society | 2014
M. Fink; M. Kromer; Ivo R. Seitenzahl; F. Ciaraldi-Schoolmann; F. K. Röpke; S. A. Sim; Rüdiger Pakmor; Ashley J. Ruiter; W. Hillebrandt
We investigate whether pure deflagration models of Chandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynamic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release E-nuc less than or similar to 1.1 x 10(51) erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with E-nuc similar to 0.5 x 10(51) erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B - V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.
Monthly Notices of the Royal Astronomical Society | 2013
Rüdiger Pakmor; Volker Springel
Magnetic fields are known to be dynamically important in the interstellar medium of our own Galaxy, and they are ubiquitously observed in diffuse gas in the halos of galaxies and galaxy clusters. Yet, magnetic fields have typically been neglected in studies of the formation of galaxies, leaving their global influence on galaxy formation largely unclear. We extend our MHD implementation in the moving-mesh code Arepo to cosmological problems which include radiative cooling and the formation of stars. In particular, we replace our previously employed divergence cleaning approach with a Powell 8-wave scheme, which turns out to be significantly more stable, even in very dynamic environments. We verify the improved accuracy through simulations of the MRI in accretion disks, that reproduce its correct linear growth rate. Using this new MHD code, we simulate the formation of isolated disk galaxies similar to the Milky Way using idealized initial conditions with and without magnetic fields. We find that the magnetic field is quickly amplified in the initial starburst and the differential rotation of the forming disk until it eventually saturates when it becomes comparable to the thermal pressure. The additional pressure component leads to a lower star formation rate at late times compared to simulations without magnetic fields, and induces changes in the spiral arm structures of the gas disk. In addition, we observe highly magnetized fountain-like outflows from the disk. These results are robust with numerical resolution and are largely independent of the initial magnetic seed field assumed in the initial conditions, as the amplification process is rapid and self-regulated. Our findings suggest an important influence of magnetic fields on galaxy formation and evolution, cautioning against their neglect in theoretical models of structure formation.
Astronomy and Astrophysics | 2008
Rüdiger Pakmor; F. K. Röpke; A. Weiss; W. Hillebrandt
Context. The nature of type Ia supernova progenitors is still unclear. The outstanding characteristic of the single-degenerate scenario is that it contains hydrogen in the binary companion of the exploding white dwarf star, which, if mixed into the ejecta of the supernova in large amounts may lead to conflicts with the observations thus ruling out the scenario. Aims. We investigate the effect of the impact of type Ia supernova ejecta on a main sequence companion star of the progenitor system. With a series of simulations we investigate how different parameters of this system affect the amount of hydrogen stripped from the companion by the impact. Methods. The stellar evolution code GARSTEC is used to set up the structure of the companion stars mimicking the effect of a binary evolution phase. The impact itself is simulated with the smoothed particle hydrodynamics code GADGET2. Results. We reproduce and confirm the results of earlier grid-based hydrodynamical simulation. Parameter studies of the progenitor system are extended to include the results of recent binary evolution studies. The more compact structure of the companion star found here significantly reduces the stripped hydrogen mass. Conclusions. The low hydrogen masses resulting from a more realistic companion structure are consistent with current observational constraints. Therefore, the single-degenerate scenario remains a valid possibility for type Ia supernova progenitors. These new results are not a numerical effect, but the outcome of different initial conditions.
Monthly Notices of the Royal Astronomical Society | 2017
Rainer Weinberger; Volker Springel; Lars Hernquist; Annalisa Pillepich; Federico Marinacci; Rüdiger Pakmor; Dylan Nelson; Shy Genel; Mark Vogelsberger; Jill Naiman; Paul Torrey
The inefficiency of star formation in massive elliptical galaxies is widely believed to be caused by the interactions of an active galactic nucleus (AGN) with the surrounding gas. Achieving a sufficiently rapid reddening of moderately massive galaxies without expelling too many baryons has however proven difficult for hydrodynamical simulations of galaxy formation, prompting us to explore a new model for the accretion and feedback effects of supermassive black holes. For high-accretion rates relative to the Eddington limit, we assume that a fraction of the accreted rest mass energy heats the surrounding gas thermally, similar to the ‘quasar mode’ in previous work. For low-accretion rates, we invoke a new, pure kinetic feedback model that imparts momentum to the surrounding gas in a stochastic manner. These two modes of feedback are motivated both by theoretical conjectures for the existence of different types of accretion flows as well as recent observational evidence for the importance of kinetic AGN winds in quenching galaxies. We find that a large fraction of the injected kinetic energy in this mode thermalizes via shocks in the surrounding gas, thereby providing a distributed heating channel. In cosmological simulations, the resulting model produces red, non-star-forming massive elliptical galaxies, and achieves realistic gas fractions, black hole growth histories and thermodynamic profiles in large haloes.
Monthly Notices of the Royal Astronomical Society | 2016
Robert J. J. Grand; Volker Springel; Facundo A. Gómez; Federico Marinacci; Rüdiger Pakmor; David J. R. Campbell; Adrian Jenkins
Vertically extended, high velocity dispersion stellar distributions appear to be a ubiquitous feature of disc galaxies, and both internal and external mechanisms have been proposed to be the major driver of their formation. However, it is unclear to what extent each mechanism can generate such a distribution, which is likely to depend on the assembly history of the galaxy. To this end, we perform 16 high-resolution cosmological-zoom simulations of Milky Way-sized galaxies using the state-of-the-art cosmological magnetohydrodynamical code AREPO, and analyse the evolution of the vertical kinematics of the stellar disc in connection with various heating mechanisms. We find that the bar is the dominant heating mechanism in most cases, whereas spiral arms, radial migration and adiabatic heating from mid-plane density growth are all subdominant. The strongest source, though less prevalent than bars, originates from external perturbations from satellites/subhaloes of masses log10(M/M⊙) ≳ 10. However, in many simulations the orbits of newborn star particles become cooler with time, such that they dominate the shape of the age–velocity dispersion relation and overall vertical disc structure unless a strong external perturbation takes place.
Astronomy and Astrophysics | 2013
Ivo R. Seitenzahl; Gabriele Cescutti; F. K. Röpke; Ashley J. Ruiter; Rüdiger Pakmor
Context: Manganese is predominantly synthesised in Type Ia supernova (SN Ia) explosions. Owing to the entropy dependence of the Mn yield in explosive thermonuclear burning, SNe Ia involving near Chandrasekhar-mass white dwarfs (WDs) are predicted to produce Mn to Fe ratios significantly exceeding those of SN Ia explosions involving sub-Chandrasekhar mass primary WDs. Of all current supernova explosion models, only SN Ia models involving near-Chandrasekhar mass WDs produce [Mn/Fe] > 0.0. Aims: Using the specific yields for competing SN Ia scenarios, we aim to constrain the relative fractions of exploding near-Chandrasekhar mass to sub-Chandrasekhar mass primary WDs in the Galaxy. Methods: We extract the Mn yields from three-dimensional thermonuclear supernova simulations referring to different initial setups and progenitor channels. We then compute the chemical evolution of Mn in the Solar neighborhood, assuming SNe Ia are made up of different relative fractions of the considered explosion models. Results: We find that due to the entropy dependence of freeze-out yields from nuclear statistical equilibrium, [Mn/Fe] strongly depends on the mass of the exploding WD, with near-Chandraskher mass WDs producing substantially higher [Mn/Fe] than sub-Chandrasekhar mass WDs. Of all nucleosynthetic sources potentially influencing the chemical evolution of Mn, only explosion models involving the thermonuclear incineration of near-Chandrasekhar mass WDs predict solar or super-solar [Mn/Fe]. Consequently, we find in our chemical evolution calculations that the observed [Mn/Fe] in the Solar neighborhood at [Fe/H] > 0.0 cannot be reproduced without near-Chandrasekhar mass SN Ia primaries. Assuming that 50 per cent of all SNe Ia stem from explosive thermonuclear burning in near-Chandrasekhar mass WDs results in a good match to data.
Monthly Notices of the Royal Astronomical Society | 2010
Ivo R. Seitenzahl; F. K. Röpke; M. Fink; Rüdiger Pakmor
Nucleosynthetic yield predictions for multidimensional simulations of thermonuclear supernovae generally rely on the tracer particle method to obtain isotopic information of the ejected material for a given supernova simulation. We investigate how many tracer particles are required to determine converged integrated total nucleosynthetic yields. For this purpose, we conduct a resolution study in the number of tracer particles for different hydrodynamical explosion models at fixed spatial resolution. We perform hydrodynamic simulations on a co-expanding Eulerian grid in two dimensions assuming rotational symmetry for both pure deflagration and delayed detonation Type Ia supernova explosions. Within a given explosion model, we vary the number of tracer particles to determine the minimum needed for the method to give a robust prediction of the integrated yields of the most abundant nuclides. For the first time, we relax the usual assumption of constant tracer particle mass and introduce a radially varying distribution of tracer particle masses. We find that the nucleosynthetic yields of the most abundant species (mass fraction > 10 -5 ) are reasonably well predicted for a tracer number as small as 32 per axis and direction - more or less independent of the explosion model. We conclude that the number of tracer particles that were used in extant published works appear to have been sufficient as far as integrated yields are concerned for the most copiously produced nuclides. Additionally we find that a suitably chosen tracer mass distribution can improve convergence for nuclei produced in the outer layer of the supernova, where the constant tracer mass prescription suffers from poor spatial resolution.
The Astrophysical Journal | 2014
Rüdiger Pakmor; Federico Marinacci; Volker Springel
Observationally, magnetic fields reach equipartition with thermal energy and cosmic rays in the interstellar medium of disk galaxies such as the Milky Way. However, thus far cosmological simulations of the formation and evolution of galaxies have usually neglected magnetic fields. We employ the moving-mesh code AREPO to follow for the first time the formation and evolution of a Milky Way-like disk galaxy in its full cosmological context while taking into account magnetic fields. We find that a prescribed tiny magnetic seed field grows exponentially by a small-scale dynamo until it saturates around z = 4 with a magnetic energy of about 10% of the kinetic energy in the center of the galaxys main progenitor halo. By z = 2, a well-defined gaseous disk forms in which the magnetic field is further amplified by differential rotation, until it saturates at an average field strength of ~6 μG in the disk plane. In this phase, the magnetic field is transformed from a chaotic small-scale field to an ordered large-scale field coherent on scales comparable to the disk radius. The final magnetic field strength, its radial profile, and the stellar structure of the disk compare well with observational data. A minor merger temporarily increases the magnetic field strength by about a factor of two, before it quickly decays back to its saturation value. Our results are highly insensitive to the initial seed field strength and suggest that the large-scale magnetic field in spiral galaxies can be explained as a result of the cosmic structure formation process.